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Residue Number Systems (RNS)

Definition
Define a modulus set to be {m1,m2, . . . ,mn} where mj and mk for
1 ≤ j 6= k ≤ n are odd pairwise relatively prime natural numbers.
For any number 0 ≤ U < M = m1m2 . . .mn, let uj ≡ U mod mj

for all 1 ≤ j ≤ n. We will then call {u1, u2, . . . , un} = U the
residue set for U.

For example, If {5, 7, 11} is a modulus set and u=157, then

157 ≡ 2 mod 5

157 ≡ 3 mod 7

157 ≡ 3 mod 11

so U = {2, 3, 3} is our residue set and M = 5 · 7 · 11 = 385.
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Why Use These

• Possible alternative method to perform arithmetic
calculations on large numbers.

• Computers have parallel processors!

• Do arithmetic component-wise on each element in the
residue set at the same time.

Say we want to add U = {1, 2, 3} and V = {4, 5, 6}
respectively as a residue set.
U + V = {1 + 4, 2 + 5, 3 + 6} = {5, 7, 9}

• It may be more efficient than only using a fraction of
computational power.
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Issues in an RNS

Because only the residue set is stored in a computers memory,
new techniques are needed to handle:

• Conversion in and out of RNS

• Overflow Detection

• Parity Checking

• Sign of a Number
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To RNS:

• Use Modular Arithmetic

• Very Fast with computers

From RNS:

• Use Chinese Remainder Theorem

• Only efficient with very large numbers
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Chinese Remainder Theorem

Theorem
Let m1,m2, . . . ,mn be odd positive integers which are pairwise
relatively prime. Let M = m1m2 . . .mn and let u1, u2, . . . un be
positive integers. There is only one integer U that satisfies

0 ≤ U < M and U ≡ uj mod mj for 1 ≤ j ≤ n.

Proof of Uniqueness.

Assume U ≡ V mod mj for 1 ≤ j ≤ n, then U − V is a
multiple of mj for all j . Note gcd(mj ,mk) = 1 when j 6= k .
This implies that U − V is a multiple of M = m1m2 . . .mn.
This argument shows that there is at most one solution.
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Chinese Remainder Theorem Existence Proof

Proof.
We can find m̄j , with 1 ≤ j ≤ n such that,

m̄j ≡ 1 mod mj and m̄j ≡ 0 mod mk

for k 6= j . This follows because mj and M
mj

are relatively prime, so

we may take

m̄j =

(
M

mj

)ϕ(mj )

by Euler’s theorem. Now the number

U = u1m̄1 + u2m̄2 + · · ·+ ur m̄n mod M

satisfies all the conditions.



Converting Into and Out of an RNS
Let {5, 7} be our modulus set and M = 5 ∗ 7 = 35. Suppose we
want to compute 11 + 17.

11 = {1, 4}
17 = {2, 3}

Thus,

11 + 17 = {(1 + 2) mod 5, (4 + 3) mod 7} = {3, 0}
Using the chinese remainder theorem, we know:

11 + 17 =

(
3 ∗
(

35

5

)ϕ(5)

+ 0 ∗
(

35

7

)ϕ(7)
)

mod 35

=
(
3 ∗ 74 + 0 ∗ 56

)
mod 35

= 3 ∗ 74 mod 35

= 7, 203 mod 35

= 28



Overflow Detection

For any arithmetic operation ∗, let Z = X ∗ Y . Overflow has
occurred if Z > M.



Overflow Example
Let {5, 7} be our modulus set and M = 5 ∗ 7 = 35. Suppose we
want to compute 32 + 17.

32 = {2, 4}

17 = {2, 3}

Thus,
32 + 17 = {4, 0}

Using the chinese remainder theorem, we know:

32 + 17 =

(
4 ∗
(

35

5

)ϕ(5)

+ 0 ∗
(

35

7

)ϕ(7)
)

mod 35

= 14

32 + 17 = 49 6= 14



Overflow Example
Let {5, 7} be our modulus set and M = 5 ∗ 7 = 35. Suppose we
want to compute 32 + 17.

32 = {2, 4}

17 = {2, 3}

Thus,
32 + 17 = {4, 0}

Using the chinese remainder theorem, we know:

32 + 17 =

(
4 ∗
(

35

5

)ϕ(5)

+ 0 ∗
(

35

7

)ϕ(7)
)

mod 35

= 14

32 + 17 = 49 6= 14



Overflow Example
Let {5, 7} be our modulus set and M = 5 ∗ 7 = 35. Suppose we
want to compute 32 + 17.

32 = {2, 4}

17 = {2, 3}

Thus,
32 + 17 = {4, 0}

Using the chinese remainder theorem, we know:

32 + 17 =

(
4 ∗
(

35

5

)ϕ(5)

+ 0 ∗
(

35

7

)ϕ(7)
)

mod 35

= 14

32 + 17 = 49 6= 14



Overflow Detection

For any arithmetic operation ∗, let Z = X ∗ Y . Overflow has
occurred if Z > M.

Why not simply compare magnitude of Z and M?

Comparing magnitudes of two numbers is NOT efficient.

Use parity checking to detect overflow.
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Parity Checking

Determining parity is telling whether a number is even or odd.

P(X ) ≡ X mod 2 = |X |2



Determining Parity

For integer X ∈ [0,M) with residue representation {x1, x2, . . . , xn}
for the modulus set {m1,m2, . . . ,mn}. Let m̂i = M

mi
. By the

chinese remainder theorem, we know

|X |M =

∣∣∣∣∣
n∑

i=1

m̂i |
xi
m̂i
|mi

∣∣∣∣∣
M

|X |M =
n∑

i=1

m̂i |
xi
m̂i
|mi − rM

P(|X |M) = P(
x1
m̂1

)⊕ P(
x2
m̂2

)⊕ . . .P(
xn
m̂n

)⊕ P(r)



Calculating r
Define Si = | zim̂i

|mi for all i ∈ {1, . . . , n}. Using the equation
above, solve for r to get:

n∑
i=1

Si

mi
− |X |M

M
= r

Because |X |M
M < 1, we can say:⌊

n∑
i=1

Si

mi

⌋
= r

We can use the approximation

Si

mi
=
d2t Si

mi
e

2t
.

It can be shown that to guarantee the accuracy of this function
t > dlog2(nM)e.



Signed Integers

Definition
In an RNS, a number X is considered non-negative if 0 ≤ X ≤ M

2 ,

and a number Y is considered negative if M
2 < X < M.

Notice the additive inverse of X , is M − X .

For example, the inverse of 1 is M − 1.



Determining Sign with Parity Overflow Detection

Theorem
We know M is odd. Now for any X < M, X is non-negative if and
only if 2X mod M is even. Else if 2X mod M is odd, then X is
negative.

For example, say M = 7.
If X=3, then 2X mod 7 ≡ 6 which is even. Thus, X is positive.
If Y=5, then 2Y mod 7 ≡ 3 which is odd. Thus, Y is negative.



Overflow with Signed Integers

Check Sign of X and Y .

Theorem (Additive Overflow X + Y )

If X and Y have different signs, then no overflow occurs.
If X and Y are positive, check sign of 2(X + Y ). If even, then no
overflow.
If X and Y are negative, check sign of 2[(M − X ) + (M − Y )]. If
even, then no overflow.

Theorem (Subtraction Overflow X − Y )

Consider X + (M − Y ). Follow addition algorithm.



Conclusions

• Parity checking has the potential to quickly solves many
limitations in a residue number system.

• I would like to see if restricting the modulous set in some way
will make converting out of an RNS more efficient.

• I would also like to test to see if keeping track of the relative
magnitude of each number is more spatially efficent.

Thanks to Dr. Kramer for excellent advisement!
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Magnitude Comparison

Is {u1, u2, . . . , ur} > {v1, v2, . . . , vr}?

Theorem
Determine the signs of U an V .

If U and V are of different signs, then the positive number is
larger.

If U and V are both positive, find the parity of each.

• If U and V have the same parity, then U − V is even if and
only if U ≥ V . Similarly U − V is odd if and only if U < V .

• If U and V are of different parity, then U − V is odd if and
only if U ≥ V . Similarly U − V is even if and only if U < V .

If U and V are both negative, find the additive inverse of each and
compare the magnitude of the inverses. The number with the
largest inverse, is the smallest in magnitude.


