Residue Number Systems

Sarah E. Ritchey
Youngstown State University

August 1, 2013

Residue Number Systems (RNS)

Definition

Define a modulus set to be $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ where m_{j} and m_{k} for $1 \leq j \neq k \leq n$ are odd pairwise relatively prime natural numbers.
For any number $0 \leq U<M=m_{1} m_{2} \ldots m_{n}$, let $u_{j} \equiv U \bmod m_{j}$ for all $1 \leq j \leq n$. We will then call $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}=U$ the residue set for U.

Residue Number Systems (RNS)

Definition

Define a modulus set to be $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ where m_{j} and m_{k} for $1 \leq j \neq k \leq n$ are odd pairwise relatively prime natural numbers.
For any number $0 \leq U<M=m_{1} m_{2} \ldots m_{n}$, let $u_{j} \equiv U \bmod m_{j}$ for all $1 \leq j \leq n$. We will then call $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}=U$ the residue set for U.

For example, If $\{5,7,11\}$ is a modulus set and $u=157$, then

$$
\begin{aligned}
157 & \equiv 2 \bmod 5 \\
157 & \equiv 3 \bmod 7 \\
157 & \equiv 3 \bmod 11
\end{aligned}
$$

so $U=\{2,3,3\}$ is our residue set and $M=5 \cdot 7 \cdot 11=385$.

Why Use These

- Possible alternative method to perform arithmetic calculations on large numbers.

Why Use These

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!

Why Use These

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!
- Do arithmetic component-wise on each element in the residue set at the same time.

Say we want to add $U=\{1,2,3\}$ and $V=\{4,5,6\}$ respectively as a residue set.

$$
U+V=\{1+4,2+5,3+6\}=\{5,7,9\}
$$

Why Use These

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!
- Do arithmetic component-wise on each element in the residue set at the same time.

Say we want to add $U=\{1,2,3\}$ and $V=\{4,5,6\}$ respectively as a residue set.

$$
U+V=\{1+4,2+5,3+6\}=\{5,7,9\}
$$

- It may be more efficient than only using a fraction of computational power.

Issues in an $R N S$

Because only the residue set is stored in a computers memory, new techniques are needed to handle:

Issues in an $R N S$

Because only the residue set is stored in a computers memory, new techniques are needed to handle:

- Conversion in and out of RNS
- Overflow Detection
- Parity Checking
- Sign of a Number

Converting into and out of $R N S$

To RNS:

- Use Modular Arithmetic
- Very Fast with computers

Converting into and out of $R N S$

To RNS:

- Use Modular Arithmetic
- Very Fast with computers

From RNS:

- Use Chinese Remainder Theorem
- Only efficient with very large numbers

Chinese Remainder Theorem

Theorem
Let $m_{1}, m_{2}, \ldots, m_{n}$ be odd positive integers which are pairwise relatively prime. Let $M=m_{1} m_{2} \ldots m_{n}$ and let $u_{1}, u_{2}, \ldots u_{n}$ be positive integers. There is only one integer U that satisfies

$$
0 \leq U<M \quad \text { and } \quad U \equiv u_{j} \quad \bmod m_{j} \quad \text { for } \quad 1 \leq j \leq n
$$

Chinese Remainder Theorem

Theorem
Let $m_{1}, m_{2}, \ldots, m_{n}$ be odd positive integers which are pairwise relatively prime. Let $M=m_{1} m_{2} \ldots m_{n}$ and let $u_{1}, u_{2}, \ldots u_{n}$ be positive integers. There is only one integer U that satisfies

$$
0 \leq U<M \quad \text { and } \quad U \equiv u_{j} \quad \bmod m_{j} \quad \text { for } \quad 1 \leq j \leq n
$$

Proof of Uniqueness.
Assume $U \equiv V \bmod m_{j}$ for $1 \leq j \leq n$, then $U-V$ is a multiple of m_{j} for all j. Note $\operatorname{gcd}\left(m_{j}, m_{k}\right)=1$ when $j \neq k$. This implies that $U-V$ is a multiple of $M=m_{1} m_{2} \ldots m_{n}$. This argument shows that there is at most one solution.

Chinese Remainder Theorem Existence Proof

Proof.

We can find \bar{m}_{j}, with $1 \leq j \leq n$ such that,

$$
\bar{m}_{j} \equiv 1 \quad \bmod m_{j} \quad \text { and } \quad \bar{m}_{j} \equiv 0 \quad \bmod m_{k}
$$

for $k \neq j$. This follows because m_{j} and $\frac{M}{m_{j}}$ are relatively prime, so we may take

$$
\bar{m}_{j}=\left(\frac{M}{m_{j}}\right)^{\varphi\left(m_{j}\right)}
$$

by Euler's theorem. Now the number

$$
U=u_{1} \bar{m}_{1}+u_{2} \bar{m}_{2}+\cdots+u_{r} \bar{m}_{n} \quad \bmod M
$$

satisfies all the conditions.

Converting Into and Out of an RNS

Let $\{5,7\}$ be our modulus set and $M=5 * 7=35$. Suppose we want to compute $11+17$.

$$
\begin{aligned}
& 11=\{1,4\} \\
& 17=\{2,3\}
\end{aligned}
$$

Thus,

$$
11+17=\{(1+2) \quad \bmod 5,(4+3) \quad \bmod 7\}=\{3,0\}
$$

Using the chinese remainder theorem, we know:

$$
\begin{aligned}
11+17 & =\left(3 *\left(\frac{35}{5}\right)^{\varphi(5)}+0 *\left(\frac{35}{7}\right)^{\varphi(7)}\right) \bmod 35 \\
& =\left(3 * 7^{4}+0 * 5^{6}\right) \bmod 35 \\
& =3 * 7^{4} \bmod 35 \\
& =7,203 \bmod 35 \\
& =28
\end{aligned}
$$

Overflow Detection

For any arithmetic operation $*$, let $Z=X * Y$. Overflow has occurred if $Z>M$.

Overflow Example

Let $\{5,7\}$ be our modulus set and $M=5 * 7=35$. Suppose we want to compute $32+17$.

$$
\begin{aligned}
& 32=\{2,4\} \\
& 17=\{2,3\}
\end{aligned}
$$

Thus,

$$
32+17=\{4,0\}
$$

Overflow Example

Let $\{5,7\}$ be our modulus set and $M=5 * 7=35$. Suppose we want to compute $32+17$.

$$
\begin{aligned}
& 32=\{2,4\} \\
& 17=\{2,3\}
\end{aligned}
$$

Thus,

$$
32+17=\{4,0\}
$$

Using the chinese remainder theorem, we know:

$$
\begin{aligned}
32+17 & =\left(4 *\left(\frac{35}{5}\right)^{\varphi(5)}+0 *\left(\frac{35}{7}\right)^{\varphi(7)}\right) \bmod 35 \\
& =14
\end{aligned}
$$

Overflow Example

Let $\{5,7\}$ be our modulus set and $M=5 * 7=35$. Suppose we want to compute $32+17$.

$$
\begin{aligned}
& 32=\{2,4\} \\
& 17=\{2,3\}
\end{aligned}
$$

Thus,

$$
32+17=\{4,0\}
$$

Using the chinese remainder theorem, we know:

$$
\begin{aligned}
32+17 & =\left(4 *\left(\frac{35}{5}\right)^{\varphi(5)}+0 *\left(\frac{35}{7}\right)^{\varphi(7)}\right) \bmod 35 \\
& =14
\end{aligned}
$$

$32+17=49 \neq 14$

Overflow Detection

For any arithmetic operation $*$, let $Z=X * Y$. Overflow has occurred if $Z>M$.

Overflow Detection

For any arithmetic operation $*$, let $Z=X * Y$. Overflow has occurred if $Z>M$.

Why not simply compare magnitude of Z and M ?

Overflow Detection

For any arithmetic operation $*$, let $Z=X * Y$. Overflow has occurred if $Z>M$.

Why not simply compare magnitude of Z and M ?
Comparing magnitudes of two numbers is NOT efficient.

Overflow Detection

For any arithmetic operation $*$, let $Z=X * Y$. Overflow has occurred if $Z>M$.

Why not simply compare magnitude of Z and M ?
Comparing magnitudes of two numbers is NOT efficient.
Use parity checking to detect overflow.

Parity Checking

Determining parity is telling whether a number is even or odd.

$$
\mathcal{P}(X) \equiv X \quad \bmod 2=|X|_{2}
$$

Determining Parity

For integer $X \in[0, M)$ with residue representation $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for the modulus set $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. Let $\hat{m}_{i}=\frac{M}{m_{i}}$. By the chinese remainder theorem, we know

$$
\begin{gathered}
|X|_{M}=\left.\left.\left|\sum_{i=1}^{n} \hat{m}_{i}\right| \frac{x_{i}}{\hat{m}_{i}}\right|_{m_{i}}\right|_{M} \\
|X|_{M}=\sum_{i=1}^{n} \hat{m}_{i}\left|\frac{x_{i}}{\hat{m}_{i}}\right|_{m_{i}}-r M \\
\mathcal{P}\left(|X|_{M}\right)=\mathcal{P}\left(\frac{x_{1}}{\hat{m}_{1}}\right) \oplus \mathcal{P}\left(\frac{x_{2}}{\hat{m}_{2}}\right) \oplus \ldots \mathcal{P}\left(\frac{x_{n}}{\hat{m}_{n}}\right) \oplus \mathcal{P}(r)
\end{gathered}
$$

Calculating r

Define $S_{i}=\left|\frac{z_{i}}{\hat{m}_{i}}\right|_{m_{i}}$ for all $i \in\{1, \ldots, n\}$. Using the equation above, solve for r to get:

$$
\sum_{i=1}^{n} \frac{S_{i}}{m_{i}}-\frac{|X|_{M}}{M}=r
$$

Because $\frac{|X|_{M}}{M}<1$, we can say:

$$
\left\lfloor\sum_{i=1}^{n} \frac{S_{i}}{m_{i}}\right\rfloor=r
$$

We can use the approximation

$$
\frac{S_{i}}{m_{i}}=\frac{\left\lceil 2^{t} \frac{S_{i}}{m_{i}}\right\rceil}{2^{t}}
$$

It can be shown that to guarantee the accuracy of this function $t>\left\lceil\log _{2}(n M)\right\rceil$.

Signed Integers

Definition
In an RNS, a number X is considered non-negative if $0 \leq X \leq \frac{M}{2}$, and a number Y is considered negative if $\frac{M}{2}<X<M$.

Notice the additive inverse of X, is $M-X$.
For example, the inverse of 1 is $M-1$.

Theorem
We know M is odd. Now for any $X<M, X$ is non-negative if and only if $2 X \bmod M$ is even. Else if $2 X \bmod M$ is odd, then X is negative.

For example, say $M=7$.
If $X=3$, then $2 X \bmod 7 \equiv 6$ which is even. Thus, X is positive. If $Y=5$, then $2 Y \bmod 7 \equiv 3$ which is odd. Thus, Y is negative.

Overflow with Signed Integers

Check Sign of X and Y.
Theorem (Additive Overflow $X+Y$)
If X and Y have different signs, then no overflow occurs.
If X and Y are positive, check sign of $2(X+Y)$. If even, then no overflow.
If X and Y are negative, check sign of $2[(M-X)+(M-Y)]$. If even, then no overflow.

Theorem (Subtraction Overflow $X-Y$)
Consider $X+(M-Y)$. Follow addition algorithm.

Conclusions

- Parity checking has the potential to quickly solves many limitations in a residue number system.
- I would like to see if restricting the modulous set in some way will make converting out of an RNS more efficient.
- I would also like to test to see if keeping track of the relative magnitude of each number is more spatially efficent.

Thanks to Dr. Kramer for excellent advisement!

Bibliography

(1) Knuth. Semi numerical Algorithms: The Art of Computer Programming. Vol 2.
(2) Lu, Mi and Jen-Shiun Chaing, A Novel Division Algorithm for the Residue Number System. IEEE Transactions on Computers.
(3) Hill, William. A Spatially-Efficient Additive Overflow Detection Algorithm for the Residue Number System.

Thanks to Dr. Kramer for excellent advisement!

Magnitude Comparison

Is $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}>\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$?
Theorem
Determine the signs of U an V.
If U and V are of different signs, then the positive number is larger.

If U and V are both positive, find the parity of each.

- If U and V have the same parity, then $U-V$ is even if and only if $U \geq V$. Similarly $U-V$ is odd if and only if $U<V$.
- If U and V are of different parity, then $U-V$ is odd if and only if $U \geq V$. Similarly $U-V$ is even if and only if $U<V$.

If U and V are both negative, find the additive inverse of each and compare the magnitude of the inverses. The number with the largest inverse, is the smallest in magnitude.

