Residue Number Systems

Sarah E. Ritchey

Youngstown State University

August 1, 2013

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Residue Number Systems (RNS)

Definition

Define a modulus set to be $\{m_1, m_2, \ldots, m_n\}$ where m_j and m_k for $1 \le j \ne k \le n$ are odd pairwise relatively prime natural numbers. For any number $0 \le U < M = m_1 m_2 \ldots m_n$, let $u_j \equiv U \mod m_j$ for all $1 \le j \le n$. We will then call $\{u_1, u_2, \ldots, u_n\} = U$ the residue set for U.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Residue Number Systems (RNS)

Definition

Define a modulus set to be $\{m_1, m_2, \ldots, m_n\}$ where m_j and m_k for $1 \le j \ne k \le n$ are odd pairwise relatively prime natural numbers. For any number $0 \le U < M = m_1 m_2 \ldots m_n$, let $u_j \equiv U \mod m_j$ for all $1 \le j \le n$. We will then call $\{u_1, u_2, \ldots, u_n\} = U$ the residue set for U.

For example, If $\{5, 7, 11\}$ is a modulus set and u=157, then

157	\equiv	2	mod 5
157	\equiv	3	mod 7
157	\equiv	3	mod 11

4日 × 日 × 日 × 日 × 日 × 日 × 1000

so $U = \{2, 3, 3\}$ is our residue set and $M = 5 \cdot 7 \cdot 11 = 385$.

• Possible alternative method to perform arithmetic calculations on large numbers.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!
- Do arithmetic component-wise on each element in the residue set at the same time.

Say we want to add $U = \{1, 2, 3\}$ and $V = \{4, 5, 6\}$ respectively as a residue set. $U + V = \{1 + 4, 2 + 5, 3 + 6\} = \{5, 7, 9\}$

- Possible alternative method to perform arithmetic calculations on large numbers.
- Computers have parallel processors!
- Do arithmetic component-wise on each element in the residue set at the same time.

Say we want to add $U = \{1, 2, 3\}$ and $V = \{4, 5, 6\}$ respectively as a residue set. $U + V = \{1 + 4, 2 + 5, 3 + 6\} = \{5, 7, 9\}$

 It may be more efficient than only using a fraction of computational power.

Issues in an RNS

Because only the residue set is stored in a computers memory, new techniques are needed to handle:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Issues in an RNS

Because only the residue set is stored in a computers memory, new techniques are needed to handle:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Conversion in and out of RNS
- Overflow Detection
- Parity Checking
- Sign of a Number

Converting into and out of RNS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

To RNS:

- Use Modular Arithmetic
- Very Fast with computers

Converting into and out of RNS

To RNS:

- Use Modular Arithmetic
- Very Fast with computers

From RNS:

- Use Chinese Remainder Theorem
- Only efficient with very large numbers

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chinese Remainder Theorem

Theorem

Let $m_1, m_2, ..., m_n$ be odd positive integers which are pairwise relatively prime. Let $M = m_1 m_2 ... m_n$ and let $u_1, u_2, ... u_n$ be positive integers. There is only one integer U that satisfies

 $0 \leq U < M$ and $U \equiv u_j \mod m_j$ for $1 \leq j \leq n$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chinese Remainder Theorem

Theorem

Let m_1, m_2, \ldots, m_n be odd positive integers which are pairwise relatively prime. Let $M = m_1 m_2 \ldots m_n$ and let $u_1, u_2, \ldots u_n$ be positive integers. There is only one integer U that satisfies

$$0 \leq U < M$$
 and $U \equiv u_j \mod m_j$ for $1 \leq j \leq n$.

Proof of Uniqueness.

Assume $U \equiv V \mod m_j$ for $1 \leq j \leq n$, then U - V is a multiple of m_j for all j. Note $gcd(m_j, m_k) = 1$ when $j \neq k$. This implies that U - V is a multiple of $M = m_1 m_2 \dots m_n$. This argument shows that there is **at most** one solution.

4日 × 日 × 日 × 日 × 日 × 日 × 1000

Chinese Remainder Theorem Existence Proof

Proof.

We can find \bar{m}_i , with $1 \leq j \leq n$ such that,

 $\bar{m}_j \equiv 1 \mod m_j$ and $\bar{m}_j \equiv 0 \mod m_k$ for $k \neq j$. This follows because m_j and $\frac{M}{m_j}$ are relatively prime, so we may take

$$ar{m}_j = \left(rac{M}{m_j}
ight)^{arphi(m_j)}$$

by Euler's theorem. Now the number

$$U = u_1 \bar{m}_1 + u_2 \bar{m}_2 + \cdots + u_r \bar{m}_n \mod M$$

<ロト < 同ト < 目ト < 目ト < 目 > つんの

satisfies all the conditions.

Converting Into and Out of an RNS

Let $\{5,7\}$ be our modulus set and M = 5 * 7 = 35. Suppose we want to compute 11 + 17.

$$11 = \{1, 4\}$$
$$17 = \{2, 3\}$$

Thus,

 $11 + 17 = \{(1+2) \mod 5, (4+3) \mod 7\} = \{3, 0\}$

Using the chinese remainder theorem, we know:

$$11 + 17 = \left(3 * \left(\frac{35}{5}\right)^{\varphi(5)} + 0 * \left(\frac{35}{7}\right)^{\varphi(7)}\right) \mod 35$$

= $(3 * 7^4 + 0 * 5^6) \mod 35$
= $3 * 7^4 \mod 35$
= $7,203 \mod 35$
= 28

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For any arithmetic operation *, let Z = X * Y. Overflow has occurred if Z > M.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Overflow Example

Let $\{5,7\}$ be our modulus set and M = 5 * 7 = 35. Suppose we want to compute 32 + 17.

$$32 = \{2, 4\}$$
$$17 = \{2, 3\}$$

Thus,

$$32 + 17 = \{4, 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overflow Example

Let $\{5,7\}$ be our modulus set and M = 5 * 7 = 35. Suppose we want to compute 32 + 17.

$$32 = \{2, 4\}$$
$$17 = \{2, 3\}$$

Thus,

$$32+17=\{4,0\}$$

Using the chinese remainder theorem, we know:

$$32 + 17 = \left(4 * \left(\frac{35}{5}\right)^{\varphi(5)} + 0 * \left(\frac{35}{7}\right)^{\varphi(7)}\right) \mod 35$$

= 14

*ロ * * ● * * ● * * ● * ● * ● * ●

Overflow Example

Let $\{5,7\}$ be our modulus set and M = 5 * 7 = 35. Suppose we want to compute 32 + 17.

$$32 = \{2, 4\}$$
$$17 = \{2, 3\}$$

Thus,

$$32 + 17 = \{4, 0\}$$

Using the chinese remainder theorem, we know:

$$32 + 17 = \left(4 * \left(\frac{35}{5}\right)^{\varphi(5)} + 0 * \left(\frac{35}{7}\right)^{\varphi(7)}\right) \mod 35$$

= 14

$$32 + 17 = 49 \neq 14$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

For any arithmetic operation *, let Z = X * Y. Overflow has occurred if Z > M.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For any arithmetic operation *, let Z = X * Y. Overflow has occurred if Z > M.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why not simply compare magnitude of Z and M?

For any arithmetic operation *, let Z = X * Y. Overflow has occurred if Z > M.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why not simply compare magnitude of Z and M?

Comparing magnitudes of two numbers is NOT efficient.

For any arithmetic operation *, let Z = X * Y. Overflow has occurred if Z > M.

Why not simply compare magnitude of Z and M?

Comparing magnitudes of two numbers is NOT efficient.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Use parity checking to detect overflow.

Parity Checking

Determining parity is telling whether a number is even or odd.

$$\mathcal{P}(X) \equiv X \mod 2 = |X|_2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ��?

Determining Parity

For integer $X \in [0, M)$ with residue representation $\{x_1, x_2, \ldots, x_n\}$ for the modulus set $\{m_1, m_2, \ldots, m_n\}$. Let $\hat{m}_i = \frac{M}{m_i}$. By the chinese remainder theorem, we know

$$|X|_{M} = \left| \sum_{i=1}^{n} \hat{m}_{i} |\frac{x_{i}}{\hat{m}_{i}}|_{m_{i}} \right|_{M}$$

$$|X|_{M} = \sum_{i=1}^{n} \hat{m}_{i} |\frac{x_{i}}{\hat{m}_{i}}|_{m_{i}} - rM$$

$$\mathcal{P}(|X|_M) = \mathcal{P}(\frac{x_1}{\hat{m}_1}) \oplus \mathcal{P}(\frac{x_2}{\hat{m}_2}) \oplus \ldots \mathcal{P}(\frac{x_n}{\hat{m}_n}) \oplus \mathcal{P}(r)$$

Calculating r

Define $S_i = |\frac{z_i}{\hat{m}_i}|_{m_i}$ for all $i \in \{1, ..., n\}$. Using the equation above, solve for r to get:

$$\sum_{i=1}^n \frac{S_i}{m_i} - \frac{|X|_M}{M} = r$$

Because $\frac{|X|_M}{M} < 1$, we can say:

$$\left\lfloor \sum_{i=1}^{n} \frac{S_i}{m_i} \right\rfloor = r$$

We can use the approximation

$$\frac{S_i}{m_i} = \frac{\lceil 2^t \frac{S_i}{m_i} \rceil}{2^t}.$$

It can be shown that to guarantee the accuracy of this function $t > \lceil \log_2(nM) \rceil$.

Signed Integers

Definition

In an RNS, a number X is considered non-negative if $0 \le X \le \frac{M}{2}$, and a number Y is considered negative if $\frac{M}{2} < X < M$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Notice the additive inverse of X, is M - X.

For example, the inverse of 1 is M - 1.

Determining Sign with Parity Overflow Detection

Theorem

We know M is odd. Now for any X < M, X is non-negative if and only if 2X mod M is even. Else if 2X mod M is odd, then X is negative.

For example, say M = 7. If X=3, then 2X mod $7 \equiv 6$ which is even. Thus, X is positive. If Y=5, then 2Y mod $7 \equiv 3$ which is odd. Thus, Y is negative.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Overflow with Signed Integers

Check Sign of X and Y.

Theorem (Additive Overflow X + Y)

If X and Y have different signs, then no overflow occurs. If X and Y are positive, check sign of 2(X + Y). If even, then no overflow.

If X and Y are negative, check sign of 2[(M - X) + (M - Y)]. If even, then no overflow.

4日 × 日 × 日 × 日 × 日 × 日 × 1000

Theorem (Subtraction Overflow X - Y)

Consider X + (M - Y). Follow addition algorithm.

Conclusions

- Parity checking has the potential to quickly solves many limitations in a residue number system.
- I would like to see if restricting the modulous set in some way will make converting out of an RNS more efficient.
- I would also like to test to see if keeping track of the relative magnitude of each number is more spatially efficent.

Thanks to Dr. Kramer for excellent advisement!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bibliography

- Knuth. Semi numerical Algorithms: The Art of Computer Programming. Vol 2.
- Q Lu, Mi and Jen-Shiun Chaing, A Novel Division Algorithm for the Residue Number System. IEEE Transactions on Computers.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

3 Hill, William. A Spatially-Efficient Additive Overflow Detection Algorithm for the Residue Number System.

Thanks to Dr. Kramer for excellent advisement!

Magnitude Comparison

Is
$$\{u_1, u_2, \ldots, u_r\} > \{v_1, v_2, \ldots, v_r\}$$
?

Theorem

Determine the signs of U an V.

If U and V are of different signs, then the positive number is larger.

If U and V are both positive, find the parity of each.

- If U and V have the same parity, then U − V is even if and only if U ≥ V. Similarly U − V is odd if and only if U < V.
- If U and V are of different parity, then U − V is odd if and only if U ≥ V. Similarly U − V is even if and only if U < V.

If U and V are both negative, find the additive inverse of each and compare the magnitude of the inverses. The number with the largest inverse, is the smallest in magnitude.