Prime Time Algorithms!

Constructing a Prime Number Generator

Sarah E. Ritchey

Youngstown State University

Prime Number Facts

Prime Number Facts

1 Euclid showed that there are infinitely many prime
numbers.

Prime Number Facts

1 Euclid showed that there are infinitely many prime
numbers.

2 Largest known prime number is 257885161 _ { |t has
17,425,170 digits.

Euclid showed that there are infinitely many prime
numbers.

Largest known prime number is 257:885161 _{ |t has
17,425,170 digits.

Smallest prime number is 2, and is the only even prime.

Euclid showed that there are infinitely many prime
numbers.

Largest known prime number is 257:885161 _{ |t has
17,425,170 digits.

Smallest prime number is 2, and is the only even prime.

Determining if a large number is prime is computationally
feasible.

Euclid showed that there are infinitely many prime
numbers.

Largest known prime number is 257:885161 _{ |t has
17,425,170 digits.

Smallest prime number is 2, and is the only even prime.

Determining if a large number is prime is computationally
feasible.

Factoring a large number into its prime components is
computationally intractable.

Polynomial Prime Generators

Consider the polynomial (with domain restricted to integers)

f(n) =n?+n+441.

Consider the polynomial (with domain restricted to integers)

f(n) = n? + n+41.

Here are some facts about this function.

This function produces only prime numbers for
n=0,1,...,39.

Consider the polynomial (with domain restricted to integers)

f(n) = n? + n+41.

Here are some facts about this function.

This function produces only prime numbers for
n=0,1,..,39.

But, f(40) = 40% - 40 + 41 = 40 - 41 + 41 = 412,
For the first 100 inputs, 86 are prime.

Consider the polynomial (with domain restricted to integers)

f(n) = n? + n+41.

Here are some facts about this function.

This function produces only prime numbers for
n=0,1,..,39.

But, f(40) = 40% - 40 + 41 = 40 - 41 + 41 = 412,
For the first 100 inputs, 86 are prime.

For 0 < n < 108, f generates 261,081 primes.

Consider the polynomial (with domain restricted to integers)

f(n) = n? + n+41.

Here are some facts about this function.
This function produces only prime numbers for
n=0,1,..,39.
But, f(40) = 40% - 40 + 41 = 40 - 41 + 41 = 412,
For the first 100 inputs, 86 are prime.
For 0 < n < 108, f generates 261,081 primes.
Not bad, but not all primes!

Can we construct a polynomial whose outputs are always
prime, for integer inputs?

No Polynomial Prime Generator Exists

Consider the polynomial

f(x) = aka P ak_1xk‘1 + -+ a1 X + a.

Consider the polynomial

k—1

f(x) = arx¥ + a1 x*1+ -+ ayx + a.

Suppose that f(ny) = p, where g is an integer and p is prime.
Let t be an integer. Now,

f(no + tp) = ax(no + to)* + - - + a1 (no + tp) + ao
= (aknf + a_1ng ' + -+ ayng + a) + pQ(t)
= f(no) + pQ(1)
= p + pQ(t)
=p(1+ Q(1))

Consider the polynomial

k—1

f(x) = arx¥ + a1 x*1+ -+ ayx + a.

Suppose that f(ny) = p, where g is an integer and p is prime.
Let t be an integer. Now,

f(no + tp) = ax(no + to)* + - - + a1 (no + tp) + ao
= (aknf + a_1ng ' + -+ ayng + a) + pQ(t)
= f(no) + pQ(1)
= p + pQ(t)
=p(1+ Q(1))

We conclude that p|f(n, + tp).

Consider the polynomial

k—1

f(x) = arx¥ + a1 x*1+ -+ ayx + a.

Suppose that f(ny) = p, where g is an integer and p is prime.
Let t be an integer. Now,

f(no + tp) = ax(no + to)* + - - + a1 (no + tp) + ao
= (aknf + a_1ng ' + -+ ayng + a) + pQ(t)
= f(no) + pQ(1)
= p + pQ(t)
=p(1+ Q(1))

We conclude that p|f(n, + tp).
But by assumption, f(n, + tp) = p for all £.
This can only occur no more than k times.

Consider the polynomial

k—1

f(x) = arx¥ + a1 x*1+ -+ ayx + a.

Suppose that f(ny) = p, where g is an integer and p is prime.
Let t be an integer. Now,

f(no + tp) = ax(no + to)* + - - + a1 (no + tp) + ao
= (aknf + a_1ng ' + -+ ayng + a) + pQ(t)
= f(no) + pQ(1)
= p + pQ(t)
=p(1+ Q(1))

We conclude that p|f(n, + tp).

But by assumption, f(n, + tp) = p for all £.

This can only occur no more than k times.

Thus, such a polynomial can not be constructed.

Prime Generation by Ancient Chinese

- Over 25 centuries ago, the Chinese believed that

n is prime if and only if n|2" — 2

- For example: 5|2° —2 =30

Over 25 centuries ago, the Chinese believed that
n is prime if and only if n|2" — 2

For example: 5[2° —2 = 30

Interestingly, this conjecture holds for the first 340 natural
numbers.

But, 341(234! — 2 even though 341 = 11 - 31

Over 25 centuries ago, the Chinese believed that
n is prime if and only if n|2" — 2

For example: 5[2° —2 = 30

Interestingly, this conjecture holds for the first 340 natural
numbers.

But, 341|2341 — 2 even though 341 = 11 - 31

In fact, it has been proven that there are infinitely many
such “pseudoprimes.”

Lots and lots of research has been done with these types
of numbers.

Over 25 centuries ago, the Chinese believed that
n is prime if and only if n|2" — 2

For example: 5[2° —2 = 30

Interestingly, this conjecture holds for the first 340 natural
numbers.

But, 341|2341 — 2 even though 341 = 11 - 31

In fact, it has been proven that there are infinitely many
such “pseudoprimes.”

Lots and lots of research has been done with these types
of numbers.

Must admit that for the calculation power available that long
ago, the Chinese had a great formula.

Other Prime Generation

These formulas are proven to generate primes

=]

n—1
agn)=>" [

[F] Wheng(n)={ 1, n is prime

> 1, niscomposite

]

i=1

These formulas are proven to generate primes

! (7] 1 n is pri
B 1] B , prime
g(n) = Z [n] WIS () = { > 1, niscomposite

i=1 L 7

Primes can also be generated recursively by letting
anp = ap_1+9cd(n,an_1), and ay = 7.

Then, the sequence of differences a1 — an,
1,1,1,5,3,1,1,1,1,11,3,1,1, ..., contains only ones and
primes.

W. H. Mills

In 1947, W. H. Mills proved the following theorem.

Theorem
There exists a constant A such that [A%"] is a prime for every

positive integer n.

In 1947, W. H. Mills proved the following theorem.

There exists a constant A such that [A>"] is a prime for every
positive integer n.

The proof is remarkably short.

Important Lemmas

Let p, denote the nth prime number. A.E. Ingham has shown
that

5
Pn+1 — Pn < Kb
where K is a fixed positive integer.

Let p, denote the nth prime number. A.E. Ingham has shown
that

5
Pn+1 — Pn < Kpj
where K is a fixed positive integer.

If N is an integer greater then K® there exists a prime p such
that N3 < p < (N +1)3 —1.

Let p, denote the nth prime number. A.E. Ingham has shown
that

5
Pn+1 — Pn < Kpj
where K is a fixed positive integer.

If N is an integer greater then K® there exists a prime p such
that N3 < p < (N +1)3 —1.

Let p, be the greatest prime less then N3. Then

5
N3 < Ppat < pn+Kpg < N3+ KN < N3+ N2 < (N+1)3 1

Proof of Mills’ theorem

Let Py be a prime greater then K&. Then by the lemma we can
construct an infinite sequence of primes, Py, Py, P», ..., such
that P3 < P41 < (Pp+1)% —1.

Let Py be a prime greater then K&. Then by the lemma we can
construct an infinite sequence of primes, Py, Py, Po, ..., such
that P3 < P, 1 < (Pp+1)3 —1. Let

Up=P3 " vp=(Pa+1)°"
Then v, > up, so,

3—n—1 3—n
Upt1 =Py >Py =up (1

Vot = (Po1 +137" < (P +1)P3 " =v, ()

Proof of Mills’ theorem Continued

Then, {un} is bounded and monotone increasing.

Thus by Uniform Convergence Theorem, the sequence
converges.

Then, {un} is bounded and monotone increasing.

Thus by Uniform Convergence Theorem, the sequence
converges.

Let

A= lim up,.
n—oo

From (1) and (2), it follows that
Up < A< vp,

or
P, < A¥ <P, 1.

Then, {un} is bounded and monotone increasing.

Thus by Uniform Convergence Theorem, the sequence
converges.

Let

A= lim up,.
n—oo

From (1) and (2), it follows that
Up < A< vp,

or
P, < A¥ <P, 1.

Therefore [A%"] = Pp, and [A%'] is a prime generating function.

There are many values of A that would generate primes. In
2005, Caldwell and Cheng calculated that the minimum Mills’
constant (for the exponent ¢=3) begins with the following 600
digits:

1.3063778838 6308069046 8614492602 6057129167 8458515671
3644368053 7599664340 5376682659 8821501403 7011973957
0729696093 8103086882 2388614478 1635348688 7133922146
1943534578 7110033188 1405093575 3558319326 4801721383
2361522359 0622186016 1085667905 7215197976 0951619929
5279707992 5631721527 8412371307 6584911245 6317518426
3310565215 3513186684 1550790793 7238592335 2208421842
0405320517 6890260257 9344300869 5290636205 6989687262
1227499787 6664385157 6619143877 2844982077 5905648255
6091500412 3788524793 6260880466 8815406437 4425340131
0736114409 4137650364 3793012676 7211713103 0265228386
6154666880 4874760951 4410790754 0698417260 3473107746

Since then, the first 10,000 digits have been calculated and are
available at OEIS website!

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.

For 10 digits of A, we only get primes for n = {1,2}.

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.

For 10 digits of A, we only get primes for n = {1,2}.

For 100 digits of A, we get primes for n = {1,2,3,4,5}.

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.

For 10 digits of A, we only get primes for n = {1,2}.

For 100 digits of A, we get primes for n = {1,2,3,4,5}.

For 1,000 digits of A, we get primes for

n=1{1,2,3,4,56,7}.

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.
For 10 digits of A, we only get primes for n = {1,2}.
For 100 digits of A, we get primes for n = {1,2,3,4,5}.
For 1,000 digits of A, we get primes for
n=1{1,2,3,4,56,7}.
For 10,000 digits of A, we only get primes for
n={1,2,3,4,5,6,7,8,9}.

We calculate [A3"] up to n = 19 using different degrees of
accuracy for Mill's constant. Then, we tested to see if they were
prime using a probabilistic algorithm for the large numbers and
a deterministic algorithm for the small ones.

For 10 digits of A, we only get primes for n = {1,2}.
For 100 digits of A, we get primes for n = {1,2,3,4,5}.

For 1,000 digits of A, we get primes for
n=1{1,2,3,4,56,7}.

For 10,000 digits of A, we only get primes for
n={1,2,3,4,56,7,8,9}.

This is not as surprising as it sounds.

[A3‘°} is actually about 23,000 digits long!

Also, It takes about a gigabyte of memory to store [A32°} .

When producing primes we are left with a quandary.

The use of polynomials and other standard function
produce primes only some of the time.

Although, Mills’ Function produces only primes, the
exponential nature of the function quickly exceeds current
computing power and is really not practical given that we
were only able to calculate nine primes.

This implies that there is much work left to do in this area.

| would like to learn how to calculate more digits of Mills’
constant.

| would also like to expand my programing knowledge to be
able to work with even larger numbers with more precision.

Thanks to Dr. Ritchey for excellent advisement
and
Tim Shaffer for programing help!

1 W. H. Mills. A Prime Representing Function. Princeton
University.

2 Caldwell and Cheng. Determining Mill's Constant and a
Note on Honaker’s Problem. Journal of Integer Sequences.

3 The On-Line Encyclopedia of Integer Sequences.
http://oeis.org/

4 Burton, David. Elementary Number Theory. Seventh
Edition.

Thanks to Dr. Ritchey for excellent advisement and Tim Shaffer
for programing help!

