Putting Some Harmony Into the Harmonic Series

Sarah E. Ritchey
Youngstown State University

5 August 2011

The Harmonic Series

■ The harmonic series defined

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

■ The harmonic series not only shows up in mathematics, but also in architecture, music, and physics
■ The harmonic series was first shown to diverge by Oresme (14th century), but proofs by Mengoli, Johann Bernoulli, and Jakob Bernoulli are most well known.

Harmonic Series Diverges

> Proof (By Contradiction) Assume not. That is, assume that $\sum_{n=1}^{\infty} \frac{1}{n}$ converges and its sum is L.

Harmonic Series Diverges

Proof (By Contradiction) Assume not. That is, assume that $\sum_{n=1}^{\infty} \frac{1}{n}$ converges and its sum is L.

$$
L=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots
$$

Review
Harmonic Series
Harmonic Series Diverges
Thinning the
Harmonic Series
Convergence Proof

Some Other
Results on
Harmonic Thinning
Consequences

Conclusions

$$
=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{1}{8}\right)+\cdots
$$

Harmonic Series Diverges

Proof (By Contradiction) Assume not. That is, assume that $\sum_{n=1}^{\infty} \frac{1}{n}$ converges and its sum is L.

$$
\begin{aligned}
L & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots \\
& =\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{1}{8}\right)+\cdots
\end{aligned}
$$

$$
>\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{8}+\frac{1}{8}\right)+\cdots
$$

$$
=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots
$$

$$
=L
$$

Harmonic Series Diverges

Proof (By Contradiction) Assume not. That is, assume that $\sum_{n=1}^{\infty} \frac{1}{n}$ converges and its sum is L.

$$
\begin{aligned}
L & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots \\
& =\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{1}{8}\right)+\cdots \\
& >\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{8}+\frac{1}{8}\right)+\cdots \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots \\
& =L
\end{aligned}
$$

Note: This is a contradiction since $L \ngtr L$.

Delete All Terms Except Reciprocals of Prime Numbers

The series is:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\cdots
$$

- There is an infinite number of primes, so there is an infinite number of terms.

■ We have also removed an infinite number of terms.
■ Does this series converge?

- In 1737, Euler showed that this series diverges.
- For a proof, see Dunham, 1999, page 76.

Delete All Terms Except Reciprocals of Prime Numbers

The series is:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\cdots
$$

- There is an infinite number of primes, so there is an infinite number of terms.

■ We have also removed an infinite number of terms.
■ Does this series converge?
■ In 1737, Euler showed that this series diverges.
■ For a proof, see Dunham, 1999, page 76.

Delete All Terms According to a Pattern

Review

Consider the set $S=\{1,3,6,10,15,21,28,36,45, \ldots\}$ formed by removing $\{1,2,3,4, \ldots\}$ members in the original sequence of natural numbers

$$
\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots\}
$$

Delete All Terms According to a Pattern

Review

Thinning the Harmonic Series

Convergence

Proof
Some Other
Results on
Harmonic
Thinning
Consequences
Conclusions
Citations

Consider the set $S=\{1,3,6,10,15,21,28,36,45, \ldots\}$ formed by removing $\{1,2,3,4, \ldots\}$ members in the original sequence of natural numbers

$$
\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots\}
$$

$$
\sum_{k \in S} \frac{1}{k}=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21} \cdots
$$

Delete All Terms According to a Pattern

Review
Harmonic Series
Harmonic Series Diverges
Thinning the
Harmonic Series

Convergence

Proof
Some Other
Results on
Harmonic
Thinning
Consequences
Conclusions

Citations

$\sum_{k \in S} \frac{1}{k}=1+\frac{1}{3}+\frac{1}{3 \times 2}+\frac{1}{5 \times 2}+\frac{1}{5 \times 3}+\frac{1}{7 \times 3}+\frac{1}{7 \times 4}+\cdots$

$$
=1+\frac{1}{3}\left(\frac{2+1}{2}\right)+\frac{1}{5}\left(\frac{3+2}{2 \times 3}\right)+\frac{1}{7}\left(\frac{4+3}{3 \times 4}\right)+\cdots
$$

Delete All Terms According to a Pattern

$$
\begin{aligned}
\sum_{k \in S} \frac{1}{k} & =1+\frac{1}{3}+\frac{1}{3 \times 2}+\frac{1}{5 \times 2}+\frac{1}{5 \times 3}+\frac{1}{7 \times 3}+\frac{1}{7 \times 4}+\cdots \\
& =1+\frac{1}{3}\left(\frac{2+1}{2}\right)+\frac{1}{5}\left(\frac{3+2}{2 \times 3}\right)+\frac{1}{7}\left(\frac{4+3}{3 \times 4}\right)+\cdots \\
& =1+\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots \\
& =1+\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{k-1}-\frac{1}{k}\right)+\cdots
\end{aligned}
$$

Delete All Terms According to a Pattern

$$
\begin{aligned}
\sum_{k \in S} \frac{1}{k} & =1+\frac{1}{3}+\frac{1}{3 \times 2}+\frac{1}{5 \times 2}+\frac{1}{5 \times 3}+\frac{1}{7 \times 3}+\frac{1}{7 \times 4}+\cdots \\
& =1+\frac{1}{3}\left(\frac{2+1}{2}\right)+\frac{1}{5}\left(\frac{3+2}{2 \times 3}\right)+\frac{1}{7}\left(\frac{4+3}{3 \times 4}\right)+\cdots \\
& =1+\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots \\
& =1+\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{k-1}-\frac{1}{k}\right)+\cdots \\
& =\lim _{k \rightarrow+\infty}\left(2-\frac{1}{k}\right)=2
\end{aligned}
$$

This series converges to 2 !

Delete All Terms That Include A Particular Digit, Say 9

The series is:

$$
\begin{aligned}
1+ & \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}+\frac{1}{10}+\frac{1}{11}+\cdots+\frac{1}{18}+\frac{1}{20} \\
& +\cdots+\frac{1}{88}+\frac{1}{100}+\cdots+\frac{1}{108}+\frac{1}{110}+\cdots .
\end{aligned}
$$

- Does this series converge or diverge?

■ Proven to converge in 1914 by Kempner.

- Proof is by induction.
- The fact that this series converges tells us something about the density of the digits in numbers.

Delete All Terms That Include A Particular Digit, Say 9

The series is:

$$
\begin{aligned}
1+ & \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}+\frac{1}{10}+\frac{1}{11}+\cdots+\frac{1}{18}+\frac{1}{20} \\
& +\cdots+\frac{1}{88}+\frac{1}{100}+\cdots+\frac{1}{108}+\frac{1}{110}+\cdots .
\end{aligned}
$$

■ Does this series converge or diverge?

- Proven to converge in 1914 by Kempner
- Proof is by induction.

■ The fact that this series converges tells us something about the density of the digits in numbers.

Delete All Terms That Include A Particular Digit, Say 9

The series is:

$$
\begin{aligned}
1+ & \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}+\frac{1}{10}+\frac{1}{11}+\cdots+\frac{1}{18}+\frac{1}{20} \\
& +\cdots+\frac{1}{88}+\frac{1}{100}+\cdots+\frac{1}{108}+\frac{1}{110}+\cdots .
\end{aligned}
$$

■ Does this series converge or diverge?
■ Proven to converge in 1914 by Kempner.

- Proof is by induction.

■ The fact that this series converges tells us something about the density of the digits in numbers.

Grouping the 9-less Series

Grouping the terms yields:

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence

Proof
Some Other
Results on
Harmonic
Thinning
Consequences
Conclusions
Citations

$$
\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{10}+\cdots \frac{1}{88}\right)
$$

$$
+\left(\frac{1}{100}+\cdots+\frac{1}{888}\right)+\cdots
$$

If we let a_{n} represent the sum of the nth group of terms, then the series can be written as

- Observe that the first and greatest fraction in a_{n} is $1 / 10^{n-1}$
- Claim - There are fewer than 9^{n} terms in a_{n}.
- This implies that the value of $a_{n}<9^{n} / 10^{n-1}$

Grouping the 9-less Series

Grouping the terms yields:

$$
\begin{gathered}
\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{10}+\cdots \frac{1}{88}\right) \\
+\left(\frac{1}{100}+\cdots+\frac{1}{888}\right)+\cdots
\end{gathered}
$$

If we let a_{n} represent the sum of the nth group of terms, then the series can be written as

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

- Observe that the first and greatest fraction in a_{n} is $1 / 10^{n-1}$.
- Claim - There are fewer than 9^{n} terms in a_{n}.
- This implies that the value of $a_{n}<9^{n} / 10^{n-1}$

Grouping the 9-less Series

Grouping the terms yields:

$$
\begin{gathered}
\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{10}+\cdots \frac{1}{88}\right) \\
+\left(\frac{1}{100}+\cdots+\frac{1}{888}\right)+\cdots
\end{gathered}
$$

If we let a_{n} represent the sum of the nth group of terms, then the series can be written as

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

- Observe that the first and greatest fraction in a_{n} is $1 / 10^{n-1}$.
- Claim - There are fewer than 9^{n} terms in a_{n}. - This implies that the value of $a_{n}<9^{n} / 10^{n-1}$

Grouping the 9-less Series

Grouping the terms yields:

$$
\begin{gathered}
\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{10}+\cdots \frac{1}{88}\right) \\
+\left(\frac{1}{100}+\cdots+\frac{1}{888}\right)+\cdots
\end{gathered}
$$

If we let a_{n} represent the sum of the nth group of terms, then the series can be written as

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

- Observe that the first and greatest fraction in a_{n} is $1 / 10^{n-1}$.
- Claim - There are fewer than 9^{n} terms in a_{n}.
- This implies that the value of $a_{n}<9^{n} / 10^{n-1}$.

Proof of Convergence (by induction - by Honsberger, 1976, page 98)

Claim: The number of terms in each group of a_{n} is bounded by 9^{n}.

- The number of terms in a_{1} is $8<9^{1}$. That is, ($1,1 / 2,1 / 3, \ldots, 1 / 8$)
- The number of terms in a_{2} is $72<9^{2}$
- Induction Hypothesis. Assume that the number of terms in a_{k} is less than 9^{k} for $k=1,2,3, \ldots, n$.
- We will use this assumption to deduce that the number of terms in a_{n+1} is less than 9^{n+1}
- The group a_{n+1} contains $1 / 10^{n}$ and all fractions not deleted between $1 / 10^{n}$ and $1 / 10^{n+1}$

Proof of Convergence (by induction - by Honsberger, 1976, page 98)

Claim: The number of terms in each group of a_{n} is bounded by 9^{n}.

- The number of terms in a_{1} is $8<9^{1}$. That is, ($1,1 / 2,1 / 3, \ldots, 1 / 8)$.
- The number of terms in a_{2} is $72<9^{2}$.
- Induction Hypothesis. Assume that the number of terms in a_{k} is less than 9^{k} for $k=1,2,3, \ldots, n$.
- W/e will use this assumption to deduce that the number of terms in a_{n+1} is less than 9^{n+1}
- The group a_{n+1} contains $1 / 10^{n}$ and all fractions not deleted between $1 / 10^{n}$ and $1 / 10^{n+1}$

Proof of Convergence (by induction - by Honsberger, 1976, page 98)

Claim: The number of terms in each group of a_{n} is bounded by 9^{n}.

- The number of terms in a_{1} is $8<9^{1}$. That is, ($1,1 / 2,1 / 3, \ldots, 1 / 8)$.
- The number of terms in a_{2} is $72<9^{2}$.
- Induction Hypothesis. Assume that the number of terms in a_{k} is less than 9^{k} for $k=1,2,3, \ldots, n$.
- We will use this assumption to deduce that the number of terms in a_{n+1} is less than 9^{n+1}
- The group a_{n+1} contains $1 / 10^{n}$ and all fractions not deleted between $1 / 10^{n}$ and $1 / 10^{n+1}$

Proof of Convergence (by induction - by Honsberger, 1976, page 98)

Claim: The number of terms in each group of a_{n} is bounded by 9^{n}.

- The number of terms in a_{1} is $8<9^{1}$. That is, ($1,1 / 2,1 / 3, \ldots, 1 / 8)$.
- The number of terms in a_{2} is $72<9^{2}$.
- Induction Hypothesis. Assume that the number of terms in a_{k} is less than 9^{k} for $k=1,2,3, \ldots, n$.
■ We will use this assumption to deduce that the number of terms in a_{n+1} is less than 9^{n+1}
- The group a_{n+1} contains $1 / 10^{n}$ and all fractions not deleted between $1 / 10^{n}$ and $1 / 10^{n+1}$

Proof of Convergence (by induction - by Honsberger, 1976, page 98)

Claim: The number of terms in each group of a_{n} is bounded by 9^{n}.

- The number of terms in a_{1} is $8<9^{1}$. That is, ($1,1 / 2,1 / 3, \ldots, 1 / 8$).
- The number of terms in a_{2} is $72<9^{2}$.

■ Induction Hypothesis. Assume that the number of terms in a_{k} is less than 9^{k} for $k=1,2,3, \ldots, n$.
■ We will use this assumption to deduce that the number of terms in a_{n+1} is less than 9^{n+1}

- The group a_{n+1} contains $1 / 10^{n}$ and all fractions not deleted between $1 / 10^{n}$ and $1 / 10^{n+1}$

Proof Continued 2

- All numerators are equal to 1 so let's look at the denominators and break up the range as follows:

- All the numbers in the last section $\left(9 \cdot 10^{n}\right.$ to $\left.10^{n+1}\right)$ begin with 9 , so all corresponding denominators would have been deleted
- We need only to count the number of denominators in the first 8 sections, from 10^{n} up to $9 \cdot 10^{n}$
- Each of these sections contain exactly the same number of terms as the number of terms included in the initial range from 0 to 10^{n}.

Proof Continued 2

- All numerators are equal to 1 so let's look at the denominators and break up the range as follows:

$$
\underbrace{10^{n}, \ldots, 2 \cdot 10^{n}, \ldots, 3 \cdot 10^{n}, \ldots, 8 \cdot 10^{n}, \ldots, 9 \cdot 10^{n}, \ldots, 10^{n+1}}_{\text {the } a_{n+1} \text { range }}
$$

- All the numbers in the last section ($9 \cdot 10^{n}$ to 10^{n+1}) begin with 9 , so all corresponding denominators would have been deleted.

■ We need only to count the number of denominators in the first 8 sections, from 10^{n} up to $9 \cdot 10^{n}$.

- Each of these sections contain exactly the same number of terms as the number of terms included in the initial range from 0 to 10^{n}

Proof Continued 2

- All numerators are equal to 1 so let's look at the denominators and break up the range as follows:

$$
\underbrace{10^{n}, \ldots, 2 \cdot 10^{n}, \ldots, 3 \cdot 10^{n}, \ldots, 8 \cdot 10^{n}, \ldots, 9 \cdot 10^{n}, \ldots, 10^{n+1}}_{\text {the } a_{n+1} \text { range }}
$$

- All the numbers in the last section ($9 \cdot 10^{n}$ to 10^{n+1}) begin with 9 , so all corresponding denominators would have been deleted.

■ We need only to count the number of denominators in the first 8 sections, from 10^{n} up to $9 \cdot 10^{n}$.

- Each of these sections contain exactly the same number of terms as the number of terms included in the initial range from 0 to 10^{n}.

Proof Continued 3

Review
Harmonic Series
Harmonic Series Diverges Thinning the Harmonic Series

- To see why this is true note that if a denominator was deleted in an earlier grouping, it will be deleted if a new digit is appended to it.
- For example, if the number with digits $b_{1} b_{2} \ldots b_{k}$ contains the digit 9 , then certainly $3 b_{1} b_{2} \ldots b_{k}$ also contains a 9 .
- This implies that the number of fractions in a_{n+1} is
- By induction, a_{n} contains fewer than 9^{n} fractions.

Proof Continued 3

- To see why this is true note that if a denominator was deleted in an earlier grouping, it will be deleted if a new digit is appended to it.
■ For example, if the number with digits $b_{1} b_{2} \ldots b_{k}$ contains the digit 9 , then certainly $3 b_{1} b_{2} \ldots b_{k}$ also contains a 9 .
- This implies that the number of fractions in a_{n+1} is

- By induction, a_{n} contains fewer than 9^{n} fractions.

Proof Continued 3

- To see why this is true note that if a denominator was deleted in an earlier grouping, it will be deleted if a new digit is appended to it.
■ For example, if the number with digits $b_{1} b_{2} \ldots b_{k}$ contains the digit 9 , then certainly $3 b_{1} b_{2} \ldots b_{k}$ also contains a 9 .
- This implies that the number of fractions in a_{n+1} is

$$
<8\left(9+9^{2}+\cdots+9^{n}\right)=8 \cdot \frac{9\left(9^{n}-1\right)}{9-1}=9^{n+1}-9<9^{n+1}
$$

■ By induction, a_{n} contains fewer than 9^{n} fractions.

Back to the series

- Since the largest fraction in each grouping is the first term, $1 / 10^{n-1}$, we can bound a_{n} by the product of the number of terms and the largest fraction. That is, $a_{n}<9^{n} / 10^{n-1}$.
- This implies that the sum of our "9-less" series is bounded by a geometric series. That is,
- The "9-less" series converges!

Back to the series

- Since the largest fraction in each grouping is the first term, $1 / 10^{n-1}$, we can bound a_{n} by the product of the number of terms and the largest fraction. That is, $a_{n}<9^{n} / 10^{n-1}$.
■ This implies that the sum of our "9-less" series is bounded by a geometric series. That is,

■ The "9-less" series converges!

Back to the series

- Since the largest fraction in each grouping is the first term, $1 / 10^{n-1}$, we can bound a_{n} by the product of the number of terms and the largest fraction. That is, $a_{n}<9^{n} / 10^{n-1}$.
- This implies that the sum of our " 9 -less" series is bounded by a geometric series. That is,

$$
a_{1}+a_{2}+a_{3} \cdots<\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n-1}}=\frac{9}{1-\frac{9}{10}}=90
$$

■ The "9-less" series converges!

Other Results

■ 1914 Kempner's Result

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence Proof

Some Other
Results on Harmonic Thinning

Consequences
Conclusions
Citations

- In 1979 Ballie calculated (to 20 decimal places) the sum of the 9 -less series.

22.92067661926415034816

- 1916 Irwin extended the result. "If we strike out from the harmonic series those terms whose denominators contain the digit 9 at least a times, and, at the same time, the digit 8 at least b times, the digit 7, at least c times, and so on, to the digit 0 at least j times (a, b, c, \ldots, j) being any given integers, the series so obtained will converge."

Other Results

■ 1914 Kempner's Result
■ In 1979 Ballie calculated (to 20 decimal places) the sum of the 9-less series.

22.92067661926415034816

Some Other Results on Harmonic Thinning

- 1916 Irwin extended the result. "If we strike out from the harmonic series those terms whose denominators contain the digit 9 at least a times, and, at the same time, the digit 8 at least b times, the digit 7, at least c times, and so on, to the digit 0 at least i times (a, b, c, \ldots, j) being any given integers, the series so obtained will converge.

Other Results

■ 1914 Kempner's Result

- In 1979 Ballie calculated (to 20 decimal places) the sum of the 9-less series.
22.92067661926415034816

Some Other
Results on Harmonic Thinning

- 1916 Irwin extended the result. "If we strike out from the harmonic series those terms whose denominators contain the digit 9 at least a times, and, at the same time, the digit 8 at least b times, the digit 7 , at least c times, and so on, to the digit 0 at least i times (a, b, c, \ldots, i) being any given integers, the series so obtained will converge.

Other Results

■ 1914 Kempner's Result
■ In 1979 Ballie calculated (to 20 decimal places) the sum of the 9-less series.

$$
22.92067661926415034816
$$

■ 1916 Irwin extended the result. "If we strike out from the harmonic series those terms whose denominators contain the digit 9 at least a times, and, at the same time, the digit 8 at least b times, the digit 7, at least c times, and so on, to the digit 0 at least j times (a, b, c, \ldots, j) being any given integers, the series so obtained will converge."

Other Results

Review
Harmonic Series
Harmonic Series
Diverges
Thinning the
Harmonic Series
Convergence Proof

Some Other
Results on Harmonic Thinning

Consequences
Conclusions
Citations

- In 1978 Wadhwa showed that a series thinned in the form of

$$
\sum_{n \in S} \frac{1}{n^{\alpha}},
$$

where S is the set of all positive integers that have been thinned as in the " 9 -less" series, converges, provided that $\alpha>\log _{10} 9>0.95$.

Proof parallels proof given above
Note that all p-series converge where $\alpha>1$
Thus, these types of thinning processes only help us with p-series where $\log _{10} 9<\alpha \leq 1$.

Other Results

Review
Harmonic Series
Harmonic Series
Diverges
Thinning the
Harmonic Series
Convergence Proof

Some Other
Results on Harmonic Thinning

Consequences
Conclusions
Citations

- In 1978 Wadhwa showed that a series thinned in the form of

$$
\sum_{n \in S} \frac{1}{n^{\alpha}},
$$

where S is the set of all positive integers that have been thinned as in the " 9 -less" series, converges, provided that $\alpha>\log _{10} 9>0.95$.

Proof parallels proof given above
Note that all p-series converge where $\alpha>1$
Thus, these types of thinning processes only help us with p-series where $\log _{10} 9<\alpha \leq 1$.

Other Results

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence Proof

Some Other
Results on Harmonic Thinning

Consequences
Conclusions
Citations

- In 1978 Wadhwa showed that a series thinned in the form of

$$
\sum_{n \in S} \frac{1}{n^{\alpha}},
$$

where S is the set of all positive integers that have been thinned as in the "9-less" series, converges, provided that $\alpha>\log _{10} 9>0.95$.
i. Proof parallels proof given above

```
ii. Note that all p-series converge where \alpha>1
iii. Thus, these types of thinning processes only help us with
p-series where }\mp@subsup{\operatorname{log}}{10}{}9<\alpha\leq1
```


Other Results

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence Proof

Some Other
Results on
Harmonic
Thinning
Consequences
Conclusions
Citations

- In 1978 Wadhwa showed that a series thinned in the form of

$$
\sum_{n \in S} \frac{1}{n^{\alpha}},
$$

where S is the set of all positive integers that have been thinned as in the " 9 -less" series, converges, provided that $\alpha>\log _{10} 9>0.95$.
i. Proof parallels proof given above
ii. Note that all p-series converge where $\alpha>1$.
iii. Thus, these types of thinning processes only help us with p-series where $\log _{10} 9<\alpha \leq 1$.

Other Results

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence Proof

Some Other
Results on
Harmonic
Thinning
Consequences
Conclusions
Citations

■ In 1978 Wadhwa showed that a series thinned in the form of

$$
\sum_{n \in S} \frac{1}{n^{\alpha}},
$$

where S is the set of all positive integers that have been thinned as in the " 9 -less" series, converges, provided that $\alpha>\log _{10} 9>0.95$.
i. Proof parallels proof given above
ii. Note that all p-series converge where $\alpha>1$.
iii. Thus, these types of thinning processes only help us with p-series where $\log _{10} 9<\alpha \leq 1$.

Amazing Consequence of This Result

■ Let's Look at the following ratio:
number of natural numbers $<10^{n+1}$ NOT containing 9 number of natural numbers $<10^{n+1}$ that contain 9

- We quantify this with our other bound as follows:

Review
Harmonic Series
Harmonic Series Diverges
Thinning the Harmonic Series

Convergence Proof

Some Other Results on
Harmonic Thinning

Consequences

Conclusions

Citations

Amazing Consequence of This Result

■ Let's Look at the following ratio:

$$
\frac{\text { number of natural numbers }<10^{n+1} \text { NOT containing } 9}{\text { number of natural numbers }<10^{n+1} \text { that contain } 9}
$$

- We quantify this with our other bound as follows:

$$
R<\frac{\frac{9\left(9^{n}-1\right)}{9-1}}{10^{n+1}-1-\frac{9\left(9^{n}-1\right)}{9-1}}=\frac{9\left(9^{n}-1\right)}{8\left(10^{n+1}-1\right)-9\left(9^{n}-1\right)}
$$

Amazing Consequence of This Result

■ Let's Look at the following ratio:

$$
\frac{\text { number of natural numbers }<10^{n+1} \text { NOT containing } 9}{\text { number of natural numbers }<10^{n+1} \text { that contain } 9}
$$

- We quantify this with our other bound as follows:

$$
\begin{aligned}
R & <\frac{\frac{9\left(9^{n}-1\right)}{9-1}}{10^{n+1}-1-\frac{9\left(9^{n}-1\right)}{9-1}}=\frac{9\left(9^{n}-1\right)}{8\left(10^{n+1}-1\right)-9\left(9^{n}-1\right)} \\
& <\frac{9\left(9^{n}\right)}{8[9(\underbrace{11 \ldots 1}_{n+1})]-9\left(9^{n}-1\right)}<\frac{9^{n}}{8\left(10^{n}\right)-9^{n}+1} \\
& <\frac{9^{n}}{8 \cdot 10^{n}-9^{n}}=\frac{1}{8\left(\frac{10}{9}\right)^{n}-1}
\end{aligned}
$$

What Does This Imply?

Review

Harmonic Series
Harmonic Series Diverges

- As $n \rightarrow \infty$ the ratio goes to zero.
- This implies that over the huge range of natural numbers, virtually all of the numbers will contain the digit 9
Some Other
Results on
Harmonic
Thinning
- We can also say the same for all of the other digits.

Consequences

- Proof is slightly different for 0 .

Conclusions
Citations

What Does This Imply?

- As $n \rightarrow \infty$ the ratio goes to zero.

■ This implies that over the huge range of natural numbers, virtually all of the numbers will contain the digit 9 .

- We can also say the same for all of the other digits.

■ Proof is slightly different for 0

What Does This Imply?

- As $n \rightarrow \infty$ the ratio goes to zero.

■ This implies that over the huge range of natural numbers, virtually all of the numbers will contain the digit 9 .

- We can also say the same for all of the other digits.

What Does This Imply?

- As $n \rightarrow \infty$ the ratio goes to zero.

■ This implies that over the huge range of natural numbers, virtually all of the numbers will contain the digit 9 .
■ We can also say the same for all of the other digits.
■ Proof is slightly different for 0 .

Conclusions

■ At first I was very surprised that thinning out all terms not involving a prime number would still result in a divergent series.

- It was even more surprising that removing only the terms that involve a 9 would result in a convergent series.
- It is now not so surprising as the mathematics shows that when we think of the infinite numbers of numbers that "almost all" of our numbers contain the digit 9

Conclusions

■ At first I was very surprised that thinning out all terms not involving a prime number would still result in a divergent series.

- It was even more surprising that removing only the terms that involve a 9 would result in a convergent series.
- It is now not so surprising as the mathematics shows that when we think of the infinite numbers of numbers that "almost all" of our numbers contain the digit 9 .

Conclusions

■ At first I was very surprised that thinning out all terms not involving a prime number would still result in a divergent series.

- It was even more surprising that removing only the terms that involve a 9 would result in a convergent series.
■ It is now not so surprising as the mathematics shows that when we think of the infinite numbers of numbers that "almost all" of our numbers contain the digit 9 .

Bibliography

■ Ballie, R., "Reciprocals of Integers of Missing a Given Digit", The American Mathematical Monthly, Vol. 86, No. 5 (May, 1979), pp. 372-374.
■ Dunham, W., "Euler: The Master of Us All," The Mathematical Association of America, 1999.
■ Honsberger, R. ,"Mathematical Gems II',' The Mathematical Association of America, 1976
■ Irwin, F., "A Curious Convergent Series," The American Mathematical Monthly, Vol. 23 (1916), pp. 149-152.
■ Kempner, A., "A Curious Convergent Series," The American Mathematical Monthly, Vol. 21 (1914), pp. 48-50.
■ Wadhwa, A., "Convergent Subseries of the Harmonic Series," The American Mathematical Monthly, Vol. 85, No. 8 (Oct., 1978), pp. 661-663.

