
Classification Algorithms for Detecting Duplicate

Bug Reports in Large Open Source Repositories

Sarah E. Ritchey

May 8, 2014

Abstract

Software maintenance is an important part of software development. Of the hun-

dreds of defects, or bugs, reported each day, up to a third are duplicates of another

report. Processing these reports is a time consuming task. Therefore, automated

techniques are being developed to recognize these duplications. This paper describes

an improved method for automatic duplicate bug report detection based on new tex-

tual similarity features and binary classification. Using a set of new textual features,

inspired from recent text similarity research, several binary classification models were

trained. A case study was conducted on three open source systems: Eclipse, Open

Office, and Mozilla to determine the effectiveness of the improved method. A com-

parison is also made with current state-of-the-art approaches highlighting similarities

and differences. Results indicate that the accuracy of the proposed method is better

than previously reported research with respect to all three systems.

1 Introduction

As software develops and becomes more complex, it is more likely that defects or bugs

will occur in the source code. Many software development teams have implemented

bug-tracking systems to keep track of bugs reported by users. When a new bug

report is submitted, a triage must assign it to a developer to fix. It is very common for

multiple users to find the same defect and write multiple reports about the same bug.

This adds a tremendous amount of work for the triage, since they must determine if

a new report is describing the same defect as a previously submitted report. If the

triage fails to detect duplicates, multiple developers could fix the same problem. Not

only is this an enormous waste of time and resources, but it also leads to inconsistent

code. Some larger software projects can receive over 100 bug reports in a single day.

Some software repositories have even reported that up to 30% of all reports in their

systems are duplicates. Therefore it is essential to detect duplicates automatically to

keep software development fiscally feasible.

Recently, research has been conducted to develop a way to help detect if a new

report is a duplicate at the time it is submitted. A few software companies have al-

ready implemented some of these techniques. There are two major schools of thought

on how to solve this problem. The first approach is to create a list containing the k

most similar reports to the new report. This method reduces the work required by

triage, since they only need to compare the new bug report to k other bug reports

instead of the entire repository. It does not eliminate human error though, since the

triage still needs to take the time to check this list and recognize if the report is a

duplicate.

This is where the next approach, automatic classification, comes into play. Au-

tomatic classification systems automatically determine if an incoming report is a

duplicate of another report. This is done by measuring the similarity between two

reports and then comparing that to a threshold generated from test datasets. If it is

above the threshold, it will be labeled as a duplicate and deemed to be resolved. This

system would require no work by the triage. The main issue with this system is that

a non duplicate report could potentially be mislabeled as duplicates (false positive)

if the threshold is too low. Depending on the severity of the defect, this could have

disastrous results for a project since the mislabeled bug would never be looked at or

fixed.

This project looks into several state of the art automated classification systems

and develops an improved method for measuring the similarity between two reports.

The textual similarity features are derived using a system called TakeLab proposed

by Saric et al. [5]. TakeLab automates measuring of semantic similarity of short

texts using supervised machine learning. Several categorical variables are also used

to generate additional features. After all the features are calculated several binary

classification methods including Näıve Bayes and Support Vector Machines are run

1

to classify bugs as duplicate or non-duplicate. The new textual features derived by

TakeLab work well with classification methods to detect duplicate pairs of bugs and

outperform previous work.

2 Sample Bug Report

Although different software repositories use slightly different terminology, the basic

components of a bug report are in all systems. Table 1 is an actual duplicate bug

report from the Eclipse software repository. The first field of the bugid, which is

a unique identifier for that particular report. The next two fields, description and

shortdesc, give detailed accounts of the defect and how to recreate it. They are

concatenated in Table 1. Next, priority and bugseverity contain how urgent it is to fix

this particular bug. The product, version, and component tell the specific piece of

software that is having problems. The date the report was created and the last time

it was edited are in creationts and deltats respectively. The resolution tells if the

report was a a duplicate of another report (DUPLICATE), could not be reproduced

(WORKSFORME), not yet resolved (OPEN), or if the defect was fixed (FIXED).

If a report is a duplicate of another report (master), the bugid of the master report

is contained in the dupid field. If a report does not have a DUPLICATE resolution,

then the bugid field will be blank. Finally the bugstatus just states whether the report

is open or closed.

Table 1: Sample Duplicate Defect Report

bugid 214068
description Failed to preview Chart Viewer ...
shortdesc Failed to preview ...
priority P3
bugseverity critical
product BIRT
version 2.3.0

component Build
creationts 1/2/08 1:35

deltats 1/2/08 4:32
resolution DUPLICATE

dupid 214069
bugstatus CLOSED

2

3 Datasets Used

The three systems used in the case study presented here are Eclipse, Open Office, and

Mozilla. Using web scraping techniques, bug reports were collected from the Bugzilla

websites of the three systems. Table 2 contains the the time interval when the bugs

collected were submitted, the number of initial bugs collected (Bugsi), the number

of initial duplicates (Dupli), the number of bugs after preprocessing (Bugsf), the

number of duplicates after preprocessing (Duplf), and the total number of duplicate

pairs (DuplPairs).

Table 2: Details of Bug Datasets

Dataset From To Bugsi Dupli Bugsf Duplf DuplPairs
Eclipse 1/2008 12/2008 45,746 4,386 39,020 2,897 6,024

Open Office 1/2008 12/2010 31,333 4,549 23,108 2,861 6,945
Mozilla 1/2010 12/2010 78,236 10,777 65,941 6,534 16,631

After the bug reports were collected, reports that had an OPEN resolution were

removed from the datasets. This was done because their status cannot be confirmed

from the information available (i.e. the defect has not been fixed, therefore it could

end up being a duplicate). Removing them would help prevent training the model

with mislabeled data. It is also important to note that this could easily be done in

an industrial setting by using historical data. The datasets were trimmed further by

removing DUPLICATE resolution bugs that did not have masters in the dataset.

It is important to note that each group of duplicate reports could contain more

than just 2 duplicate reports. The largest grouping in this data actually contained

15 separate reports. Therefore, each group of duplicates needed to be calculated.

This was a tedious task, since the bug with the DUPLICATE resolution contains the

master reports bugid in the dupid field. It is impossible to tell that the master report

is a duplicate unless it is a duplicate of an additional report. It is possible to get long

chains of duplicate bugs that branch in both directions. The number of reports in

each group was then used to generate all the duplicate bug report pairs. Therefore,

the following algorithm was written to find all the duplicate bugs in its group and

calculate the total number of duplicate pairs.

data = allBugReports

dupData = allBugReportsWithDuplicateResolution

dictionary = {}

for bug in dupData:

equivBugs[] = list of reports equivalent to bug

duplicateID = Id of report that bug is marked a duplicate of

bugID= Id of bug

add duplicateID and bugID to equivBugs list

3

wereNewBugsAdded=true

while(wereNewBugsAdded)

if reports in equivBugs are duplicates

add master to equivBugs if it is not already in equivBugs

if reports in equivBugs are master

add duplicates to equivBugs if it is not already in equivBugs

else

wereNewBugsAdded=false

dictionary[bugID]=equivalentBugs

dupGroups[]=unique sets of equivalent bugs from dictionary

numberOfPairs=0

for group in dupGroups:

lenChoose2=factorial(len(group))/factorial(len(group)-2)/factorial(2)

numberOfPairs+=lenChoose2

Our model takes pairs of duplicate bug reports in addition to randomly generated

pairs and determines if they are duplicate or not. To be able to check the results,

an additional feature, decision, was added to each pair of bug report to indicate

whether or not it is a duplicate. The decision field was set to 1 and -1 for duplicate

and non-duplicate pairs respectively. To be consistent with original ratios in our test

data sets, about four times as many non-duplicate pairs of bugs were generated for

the training dataset.

These are the same datasets that are used in Sun et al. [6]. The Eclipse dataset is

referred to as Eclipse2008 in Sun et al. However, open bugs were not removed from

their datasets. Whereas, our datasets do not contain open bug reports.

4 Method

This section describes our method for deriving the features and training our models.

We first explain how the features are generated, followed by the classification method

and the evaluation measures.

4.1 Generating Features

An important assumption made in this research is that duplicate reports will have

similar entries in most fields. Therefore, 25 features were created to measure this

similarity. The following report fields were selected as the base for the classifica-

tion features: bugid, shortdesc, description, product, component, bugseverity, priority,

version, creationts. The most important of these fields are the shortdesc and description.

Because they contain detailed descriptions of the defect, they contain a great deal of

information that needs to be quantified. To this end, the two fields are concatenated

4

4.1 Generating Features

together and then used to generate 18 different numeric features. These features,

inspired by Saric et al. [5], are generated using the simple TakeLab system and in-

clude: n-gram word overlap for unigrams, bigrams and trigrams, n-gram word overlap

for unigrams, bigrams and trigrams after lemmatization, WordNet based augmented

word overlap, weighted word overlap, normalized differences for sentence length and

aggregate word information content, shallow named entity, and numbers overlap.

Specifics for each feature can be found in the sections below. The TakeLab system

was designed to generate a similarity score between 1 and 5 for pairs of sentences or

short text. After a set of features are calculated, Support Vector Regression predicts

the similarity score.

4.1.1 N-gram Word Overlap

Note an n-gram is a set of n consecutive words from the concatenated shortdesc and

description fields. Let S1 and S2 be the sets of consecutive n-grams in the first and

the second report, respectively. The n-gram overlap is the harmonic mean of the

degree to which the second report covers the first and the degree to which the first

report covers the second.

Definition The ngram overlap is defined as follows:

ngo(S1, S2) = 2

(
|S1|

|S1 ∩ S2|
+

|S2|
|S1 ∩ S2|

)−1
(1)

The overlap, defined by eq. (1), is computed for unigrams (1-gram), bigrams (2-

grams), and trigrams (3-grams).

4.1.2 N-gram Word Overlap After Lemmatization

The next set of features are very similar to n-gram word overlap and can be cal-

culated using eq. (1). The only difference is that n-grams are created using only

content words. Content words are nouns, verbs, adjectives, and adverbs. Intuitively,

the function words (prepositions, code, conjunctions, articles) carry less semantic in-

formation than content words. Therefore, removing them might eliminate the noise

and provide a more accurate estimate of semantic similarity. N-grams created using

this process are then called lemmas. The overlap after lemmatization is calculated

for unigrams, bigrams, and trigrams.

4.1.3 WordNet Based Augmented Word Overlap

WordNet is a hierarchical network of words linked by word relations. Therefore,

similar words will be closer together than unrelated words. One can expect a high

unigram overlap between very similar sentences only if exactly the same words (or

5

4.1 Generating Features

lemmas) appear in both sentences. To allow for some lexical variation, we use Word-

Net to assign partial scores to words that are not common to both sentences.

Definition We define the WordNet augmented coverage:

PWN(S1, S2) =
1

|S2|
∑
w1∈S1

score(w1, S2)

score(w, S) =

1, if w ∈ S
maxw′∈S sim(w,w′), otherwise

where sim(w,w′) represents the WordNet path length similarity.

Definition The WordNet-augmented word overlap feature is defined as a harmonic

mean of PWN(S1, S2) and PWN(S2, S1) or

wnba(S1, S2) = 2

(
1

PWN(S1, S2)
+

1

PWN(S2, S1)

)−1
.

4.1.4 Weighted Word Overlap

When measuring sentence similarities we give more importance to words bearing

more content, by using the information content

ic(w) = ln

(∑
w′∈C freq(w

′)

freq(w)

)
where C is the set of words in the corpus and freq(w) is the frequency of the word w

in the corpus. We use the Google Books Ngrams to obtain word frequencies because

of its excellent word coverage for English. Let S1 and S2 be the sets of words occurring

in the first and second sentence, respectively.

Definition The weighted word coverage of the second sentence by the first sentence

is given by:

wwc(S1, S2) =

∑
w∈S1∩S2

ic(w)∑
w′∈S2

ic(w′)

The weighted word overlap between two sentences is calculated as the harmonic

mean of the wwc(S1, S2) and wwc(S2, S1), or

wwo(S1, S2) = 2

(
1

wwc(S1, S2)
+

1

wwc(S2, S1)

)−1
This measure proved to be very useful, but it could be improved even further.

Misspelled frequent words are more frequent than some correctly spelled but rarely

used words. Hence dealing with misspelled words would remove the inappropriate

heavy penalty for a mismatch between correctly and incorrectly spelled words.

6

4.1 Generating Features

4.1.5 Normalized Differences

Intrinsically, longer reports with more words are more likely to be similar to other

reports, since the probability that the same words are used is higher. Therefore the

several features are included in this model to measure the normalized differences in a

pair of reports according to both sentence length and the aggregate word information

content. This prevents longer reports from having an advantage over shorter reports.

4.1.6 Shallow Named Entity

Proper nouns convey a huge amount of information. Therefore, several Shallow

Named Entity similarity features were created to measure the similarity of these

named entities. This model calculates the overlap of capitalized words and the overlap

of stock index symbols. Note that only capitalized words longer than one character

are considered to be named entities, and words in all capital letters are considered to

be stock index symbols. Named entities are also classified into the following types:

persons, organizations, locations, dates, and rudimentary temporal expressions. The

overlap of each class are calculated separately for each pair of reports. The absence

of an entity class from both sentences is indicated by a separate binary feature (one

feature for each class).

4.1.7 Numbers Overlap

Another set feature, Numbers Overlap, helps to remove bias against reports contain-

ing different sets of numbers.

Definition Let N1 and N2 be sets of number in two sentences: Define three separate

numbers overlap features to be

nof1(N1, N2) = log(1 + |N1|+ |N2|)

nof2(N1, N2) =
2|N1 ∩N2|
|N1|+ |N2|

and

nof3(N1, N2) =

1, if N1 ⊆ N2 or N2 ⊆ N1

0, otherwise
.

Additionally, the numbers that differ only in the number of decimal places are treated

as equal (e.g., 65, 65.2, and 65.234 are treated as equal, whereas 65.24 and 65.25 are

not).

7

4.1 Generating Features

4.1.8 Categorical Features

Again, assume that duplicate bug reports will have similar entries in in the most fields

of the report. Therefore, several features were included to quantify these similarities.

Definition Let b1 and b2 be bug reports. Then bi.property is the field called property

of bi. Let fn be the nth feature of the model defined by:

f19(b1, b2) =

1, if b1.product = b2.product

0, otherwise

f20(b1, b2) =

1, if b1.component = b2.component

0, otherwise

f21(b1, b2) =

1, if b1.bugseverity = b2.bugseverity

0, otherwise

f22(b1, b2) =
1

1− |b1.priority − b2.priority|

f23(b1, b2) =
1

1− |b1.version− b2.version|

Features 19 - 23 were adapted from Sun et. al’s paper [6]. When calculating feature

number 23 (version related), if the version is ‘unspecified’ for at least one of the bugs

in the pair, the value of the feature is set to 0.5.

Runeson [4] concluded that 53% of all duplicates were submitted in an interval of

20 days after the master bug was submitted. Based on Runeson findings, we decided

to calculate a new feature as the absolute value between the open dates of a pair of

bugs.

f24(b1, b2) = |b1.creationts − b2.creationts|

The last feature, inspired from Sureka et al. [7], computes the absolute difference

between the bugids of the two bugs in the pair.

f25(b1, b2) = |b1.bugid − b2.bugid|

Feature 25 is represented in Figure 1 as a group histogram that shows the differ-

ence between the duplicate pairs as light gray and non-duplicate pairs represented as

black. The feature discriminates the two categories well. Most duplicate bugs have

a smaller bug id difference compared with non-duplicate bugs.

8

4.2 Building the Training and Testing Sets

0.0001 0.46 0.92 1.38 1.84 2.3 2.76 3.22 3.68 4.14 4.6

xB10
4

0

10

20

30

40

50

60

abs(bug_id1B−Bbug_id2)

P
er

ce
n

ta
g

eB
o

fB
B

u
g

s

non−duplicates
duplicates

Figure 1: A histogram for feature 25. The x-axis represents intervals for the bug id
differences

4.2 Building the Training and Testing Sets

After we generate the features for all the bugs in the datasets, we divide the initial

dataset into a training set and a testing set. The training set contains 5,000 bug

pairs and all the other pairs are put into the testing set. The instances are divided

into the subsets using stratified sampling, so the percentage between the two classes

is preserved. That means out of the 5,000 pairs, 1,000 pairs are duplicate and 4,000

are non-duplicate. Next, all the values in the training and the testing datasets are

scaled to the [−1, 1] interval. First the training set is scaled and the ranges are then

applied to scale the testing set. All the data is available at http://www.csis.ysu.

edu/~alazar/msr14.

4.3 Binary Classification

At this point, the datasets contain pairs of duplicate and non-duplicate bug reports.

To be able to automatically identify future bugs as duplicates of existing bugs, clas-

sification methods are used. The machine learning field provides several methods.

One of the most popular algorithms today is the support vector machine and its

implementation called LibSVM [2]. The SVM classification model discriminates well

between pairs of duplicate and non-duplicate bugs, provides excellent results in terms

of accuracy and runs in an acceptable amount of time. For the SVM method, the

two best parameters C and γ are found performing a grid search done with cross-

validation on the training set. After the model predicts the class for the each instance

in the training set, the evaluation measures are computed.

See Figure 2 for the grid search on the Eclipse dataset. Other classification meth-

9

4.3 Binary Classification

Figure 2: Grid Search for LibSVM

ods are implemented in the Python package, scikit-learn [3]. We ran the following

methods from scikit-learn: K Nearest Neighbours, Linear Support Vector Machine,

RBF Support Vector Machine, Decision Tree, Random Forest and Näıve Bayes.

4.3.1 K Nearest Neighbors

K Nearest Neighbors (KNN) classification is a type of instance-based learning. This

means that a general model is not constructed from the training data. Instead,

all instances in the training dataset are stored and used to classify a new query.

When a new query is tested, the closest k neighbors are calculated using Euclidean

distance. If the majority of those neighbors belong to one class, then the new query

is predicted to be in that class as well. So for this system, if the majority of the k

neighbors are duplicates, then the test pair is labeled as a duplicate. In the scikit-

learn implementation, k is an integer value specified by the user. The optimal choice

of the value k is highly data-dependent: in general a larger k suppresses the effects

of noise, but makes the classification boundaries less distinct.

10

4.3 Binary Classification

4.3.2 Suport Vector Machines

The first support vector machine (SVM) used in this study is a Linear SVM.

Definition Given some training data D, a set of n points of the form

D = {(xi, yi) | xi ∈ Rm, yi ∈ {−1, 1}}ni=1

where the yi is either 1 or -1, indicating the class to which the point xi belongs. Each

xi is a m-dimensional real vector. If the training data are linearly separable, two

hyperplanes can be found that split the data such that all cases where yi = 1 are on

one side, all cases where yi = −1 are on the other side, and no points are between

the two planes. These hyperplanes can be described by the equations

w · x− b = 1 and w · x− b = −1.

The largest such planes are called maximum-margin hyperplanes. The region

bounded by them is called “the margin”. A third hyperplane, between the maximum-

margin hyperplanes, is then used to divide the the margin in half. Test pairs are then

mapped into m-space. If the point is on the side of the third hyperplane as all points

with yi = 1, it is predicted to be a duplicate and if y1 = −1 it is predicted to be a

non-duplicate.

The second support vector machine used in this study is a Radial Basis Function

Support Vector Machine (RBF SVM). This algorithm is similar to Linear SVM,

except that the dot products used to define the hyperplane are replaced by a nonlinear

kernel function, gaussian radial basis function.

Definition Let r = ‖x − xi‖ and ε > 0. Then, define the gaussian radial basis

function to be:

φ(r) = e−(εr)
2

This allows the algorithm to fit the maximum-margin hyperplane in a transformed

feature space. The transformation may be nonlinear and the transformed space high

dimensional; thus though the classifier is a hyperplane in the high-dimensional feature

space, it may be nonlinear in the original input space.

When the Gaussian radial basis function is used, the corresponding feature space

is actually a Hilbert space of infinite dimension! A Hilbert space is an abstract vector

space possessing the structure of an inner product that allows length and angle to be

measured.

4.3.3 Decision Tree and Random Forest

Decision trees are created by having a series of linked binary check points (decision)

that determine the probability that a new report is a duplicate. So in these tree

11

4.4 Measures

structures, leaves represent class labels and branches represent conjunctions of fea-

tures that lead to those class labels. In decision analysis, a decision tree can be used

to visually and explicitly represent decisions and decision making.

A tree can be ”learned” by splitting the source set into subsets based on the value

of each feature. This process is repeated on each derived subset in a recursive manner

called recursive partitioning. The recursion is completed when the subset at a node

has all the same value of the target variable, or when splitting no longer adds value to

the predictions. This process of top-down induction of decision trees is an example of

a greedy algorithm, and it is by far the most common strategy for learning decision

trees from data.

A random forest classifier uses a number of decision trees, in order to improve the

classification rate. It begins by selecting a random sample from the training set and

develops a decision trees to that particular set of data. This process is repeated and

the resulting trees are then averaged together to create a random forest.

4.3.4 Näıve Bayes

Näıve Bayes classifiation assumes that features are independent of other features.

Therefore, it is unrelated to the presence or absence of any other feature, given the

class variable. It also takes into account the probability of a test case belonging to one

class over another. In this experiment, there were 4 times an many non-duplicates

compared to duplicates in the training data. Therefore, prior probability would be

4/5 for non-duplicates and 1/5 for duplicates. When a new query is introduced,

the proportions of neighboring duplicates and non duplicates are calculated. These

proportions are compared with the expected probabilities. The new query is then

labeled accordingly (i.e. if more that 1/5 of the neighboring reports are duplicates,

then it is classified as a duplicate and vise versa).

4.4 Measures

Usually, classification methods are evaluated using the accuracy measure which is

calculated as the percentage of correctly classified instances. However, the accuracy

does not paint the entire picture, especially in case of unbalanced datasets. There are

fewer duplicate bugs than non-duplicates in the datasets intrinsically. In the dataset

constructed, there were 4 times less pairs of duplicate bugs than non-duplicates. The

accuracy can still be high, even if a significant number of instances from the positive

class (duplicate pairs in our case) were classified incorrectly. To avoid this problem,

we consider three other measures: precision, recall, and the area under the curve

(AUC). The standard definitions for these measures are shown below.

Definition Let tp and tn be the number of instances where duplicates and non-

duplicates were correctly identified respectively. Then, let fp be the number of in-

12

stances where non-duplicates were mislabeled as duplicates and fn be the number

of instances where duplicates were mislabeled as non-duplicates. Then define the

following measures:

Accuracy =
tp + tn

tp + tn + fp + fn

Precision =
tp

tp + fp

Recall =
tp

tp + fn

Area Under the Curve (AUC) is simply a graphical plot which illustrates the

performance of a binary classifier system as its discrimination threshold is varied. It

is created by plotting the fraction of true positives out of the total actual positives vs.

the fraction of false positives out of the total actual negatives, at various threshold

settings.

5 Preliminary Results and Observations

In this section we show that the textual features extracted by TakeLab together with

categorical features provide very good classification results. Accuracy is over 99%

for all combinations of datasets and classification algorithms. A recall of 100% was

obtained for all datasets. This means that all the positive instances (duplicate pairs

of bugs) were correctly classified. Precision is also high, but not 100%. This means

that sometimes few pairs of non-duplicate bug pairs were classified as duplicates. See

Tables 3, 4, and 5 for the results of Eclipse, Open Office, and Mozilla respectively.

With respect to the Eclipse dataset, Näıve Bayes provides the best accuracy of

100%, which means that all the bug pairs were classified correctly. For Open Office,

the highest accuracy is given by multiple algorithms, but recall is still 100%. From

the confusion matrices we see only two pairs of bug reports were misclassified. The

last table contains results related to the largest dataset in this case study: Mozilla.

Linear SVM and Nearest Neighbors returned the best results and recall of 100%.

We also ran experiments using all 25 features, only TakeLab features (18) and

only categorical features (7). All three experiments give almost identical results. We

also experimented with the first three features from TakeLab and the five categorical

features used by Sun et al.[6] and Alipour et al. [1] but this did not give good results.

The proposed approach is similar with the one described by Alipour et al. [1],

with the exception of the features used. Three of the classification algorithms are

common, but the additional algorithms we used may work better for larger datasets.

The difference in results between the two approaches are reported in Table 6. The

new set of textual features presented in this paper improves the accuracy between

3.25% and 6.32% over the contextual approach proposed by Alipour et al.

13

Sun et al. [6] were the first ones to propose the set of five categorical features

(features 19 - 23), in addition of two textual measures based on the BM25F measure.

The results in [6] are reported in terms of top-k recall rates and are not directly

comparable with our results. However, no more than 80% of the duplicates were

correctly identified compared with the 100% classification recall rates we obtained.

Table 3: Eclipse Results

NK Neighbors LSVM RBF SVM Decision Tree Random Forest Näıve Bayes
Accuracy: 0.99992 0.99996 0.999841 0.999841 0.99996 1
Precision: 0.999605 0.999803 0.999211 0.999211 0.999803 1

Recall: 1 1 1 1 1 1
AUC: 0.99995 0.999975 0.9999 0.9999 0.999975 1

Table 4: Open Office Results

NK Neighbors LSVM RBF SVM Decision Tree Random Forest Näıve Bayes
Accuracy: 0.999933 0.999933 0.999697 0.999798 0.999899 0.999933
Precision: 0.99966 0.99966 0.998471 0.99898 0.99949 0.99966

Recall: 1 1 1 1 1 1
AUC: 0.999958 0.999958 0.999811 0.999874 0.999937 0.999958

Table 5: Mozilla Results

NK Neighbors LSVM RBF SVM Decision Tree Random Forest Näıve Bayes
Accuracy: 0.999949 0.999949 0.999936 0.999347 0.999936 0.999808
Precision: 0.999745 0.999745 0.999681 0.996943 0.999808 1

Recall: 1 1 1 0.999808 0.999872 0.999042
AUC: 0.999968 0.999968 0.99996 0.99952 0.999912 0.999521

6 Conclusions and Future Work

The paper presents an improved method to detect duplicate bug reports based on

textual similarity measures. TakeLab, a text similarity system, is used to generate a

majority of the features. A total of 25 new textual features are used. After deter-

mining the features, binary classification methods were run to categorize bugs into

two classes: duplicate or non-duplicate. We tested this method on bug reports from

Eclipse, Open Office, and Mozilla. Our method improves duplicate bug report detec-

tion by 6.32% even without the use of context based features as reported by Alipour

et al. [1]. These preliminary results are very promising. In future work, we plan on

using 10 times the size of the current datasets used to see if the current results hold.

14

Table 6: Comparison with Alipour’s Results [1]

New Features Alipour
Accuracy AUC Accuracy AUC

Eclipse 100.0000 1.0000 96.75 0.9900
Open Office 99.9899 0.9999 93.67 0.9660

Mozilla 99.9930 0.9999 94.78 0.9430

7 Bibliography

[1] A. Alipour, A. Hindle, and E. Stroulia. A contextual approach towards more

accurate duplicate bug report detection. Proceedings of the Tenth International

Workshop on Mining Software Repositories, pages 183–192, 2013.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[4] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect

reports using natural language processing. 29th International Conference on Soft-

ware Engineering, pages 499–510, 2007.

[5] F. Saric, G. Glavas, M. Karan, J. Snajder, and B. Basic. Takelab: Systems for

measuring semantic text similarity. In Proceedings of the First Joint Conference

on Lexical and Computational Semantics, pages 441–448, Montreal, Canada, June

2012.

[6] C. Sun, D. Lo, S. Khoo, and J. Jiang. Towards more accurate retrieval of du-

plicate bug reports. Proceedings of the 26th IEEE/ACM Automated Software

Engineering, pages 253–262, 2011.

[7] A. Sureka and P. Jalote. Detecting duplicate bug report using character n-gram-

based features. Asia Pacific Software Engineering Conference, pages 366–374,

2010.

15

8 Appendix

8.1 Acknolegements

Thanks to Dr. Lazar and Dr. Sharif for advisement!

8.2 Project Website and Blog

• http://www.csis.ysu.edu/∼ creu/

• http://ysu-creu13-14.blogspot.com

8.3 Publications

• Lazar, A., Ritchey., S., Sharif, B., Improving the Accuracy of Duplicate Bug

Report Detection using Textual Similarity Measures, The 11th Working Confer-

ence on Mining Software Repositories (MSR), Hyderabad, India, 2014, 4 pages

to appear.

• Lazar, A., Ritchey., S., Sharif, B., Generating Duplicate Bug Datasets, The

11th Working Conference on Mining Software Repositories (MSR), Hyderabad,

India, 2014, 4 pages to appear.

16

