
Classification Algorithms for Detecting Duplicate
Bug Reports in Large Open Source Repositories

Sarah E. Ritchey

Youngstown State University

April 28, 2014

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Motivation

I Complex software can have more defects

I Bug repositories to keep track of reported defects

I Multiple reports on same bug (duplicates)

I Triage assigns bugs to developer or marks as duplicate

I Tremendous amount of work for the triage

I Enormous waste of time and resources

I Larger software projects over 100 bug reports in a single day

I Up to 30% of all reports in their systems are duplicates

Essential to detect duplicates automatically to keep software
development fiscally feasible!

Two Methods

Top k-list

I reduces the work required by triage

I still susceptible to human error

Automatic classification

I Automatically determines status of report

I If labeled as a duplicate, requires no work by the triage

I Non duplicate report could potentially be mislabeled

Two Methods

Top k-list

I reduces the work required by triage

I still susceptible to human error

Automatic classification

I Automatically determines status of report

I If labeled as a duplicate, requires no work by the triage

I Non duplicate report could potentially be mislabeled

Sample Duplicate Defect Report

bugid 214068

description Failed to preview Chart Viewer ...

shortdesc Failed to preview ...

priority P3

bugseverity critical

product BIRT

version 2.3.0

component Build

creationts 1/2/08 1:35

deltats 1/2/08 4:32

resolution DUPLICATE

dupid 214069

bugstatus CLOSED

Table: Sample Duplicate Defect Report

Generating Datasets

Table: Details of Bug Datasets

Dataset From To Bugsi Dupli Bugsf Duplf DuplPairs
Eclipse 1/2008 12/2008 45,746 4,386 39,020 2,897 6,024

Open Office 1/2008 12/2010 31,333 4,549 23,108 2,861 6,945
Mozilla 1/2010 12/2010 78,236 10,777 65,941 6,534 16,631

Reports were removed with:

I OPEN resolution reports

I DUPLICATE resolution bugs without masters in the dataset

Generating Datasets

Table: Details of Bug Datasets

Dataset From To Bugsi Dupli Bugsf Duplf DuplPairs
Eclipse 1/2008 12/2008 45,746 4,386 39,020 2,897 6,024

Open Office 1/2008 12/2010 31,333 4,549 23,108 2,861 6,945
Mozilla 1/2010 12/2010 78,236 10,777 65,941 6,534 16,631

Reports were removed with:

I OPEN resolution reports

I DUPLICATE resolution bugs without masters in the dataset

Duplicate Groups and Pairs

I Groups of duplicate reports be greater than 2

I Group of duplicates needed to be calculated

I This was a tedious task!

I Only DUPLICATE resolution bugs contain information

I Impossible to tell if master report has a duplicate

I Long chains of duplicate bugs that branch in both directions

I Algorithm finds duplicate group and duplicate pairs.

Duplicate Groups and Pairs

I Groups of duplicate reports be greater than 2

I Group of duplicates needed to be calculated

I This was a tedious task!

I Only DUPLICATE resolution bugs contain information

I Impossible to tell if master report has a duplicate

I Long chains of duplicate bugs that branch in both directions

I Algorithm finds duplicate group and duplicate pairs.

Duplicate Groups and Pairs

I Groups of duplicate reports be greater than 2

I Group of duplicates needed to be calculated

I This was a tedious task!

I Only DUPLICATE resolution bugs contain information

I Impossible to tell if master report has a duplicate

I Long chains of duplicate bugs that branch in both directions

I Algorithm finds duplicate group and duplicate pairs.

Distinguishing Duplicate and Non-Duplicates

Goal of project is to correctly identify pairs of reports as duplicates
or not.

I Additional feature, decision, added to each pair

I decision=1 for duplicate pairs

I decision=-1 for non-duplicate pairs

I 4:1 ratio of non-duplicate pairs to duplicate pairs

Distinguishing Duplicate and Non-Duplicates

Goal of project is to correctly identify pairs of reports as duplicates
or not.

I Additional feature, decision, added to each pair

I decision=1 for duplicate pairs

I decision=-1 for non-duplicate pairs

I 4:1 ratio of non-duplicate pairs to duplicate pairs

Distinguishing Duplicate and Non-Duplicates

Goal of project is to correctly identify pairs of reports as duplicates
or not.

I Additional feature, decision, added to each pair

I decision=1 for duplicate pairs

I decision=-1 for non-duplicate pairs

I 4:1 ratio of non-duplicate pairs to duplicate pairs

Distinguishing Duplicate and Non-Duplicates

Goal of project is to correctly identify pairs of reports as duplicates
or not.

I Additional feature, decision, added to each pair

I decision=1 for duplicate pairs

I decision=-1 for non-duplicate pairs

I 4:1 ratio of non-duplicate pairs to duplicate pairs

Feature Generation

Assumption: duplicate reports will be similar

I What does it mean to be similar?

I Generate 25 different similarity measures

I Each features represents coordinate of point in 25-space.

I First 18 measure textual similarity of shortdesc and description.

I Inspired by Saric et al. [5], are generated using TakeLab
system

I Next 7 features measure categorial similarity and use other
report fields

Feature Generation

Assumption: duplicate reports will be similar

I What does it mean to be similar?

I Generate 25 different similarity measures

I Each features represents coordinate of point in 25-space.

I First 18 measure textual similarity of shortdesc and description.

I Inspired by Saric et al. [5], are generated using TakeLab
system

I Next 7 features measure categorial similarity and use other
report fields

Feature Generation

Assumption: duplicate reports will be similar

I What does it mean to be similar?

I Generate 25 different similarity measures

I Each features represents coordinate of point in 25-space.

I First 18 measure textual similarity of shortdesc and description.

I Inspired by Saric et al. [5], are generated using TakeLab
system

I Next 7 features measure categorial similarity and use other
report fields

Feature Generation

Assumption: duplicate reports will be similar

I What does it mean to be similar?

I Generate 25 different similarity measures

I Each features represents coordinate of point in 25-space.

I First 18 measure textual similarity of shortdesc and description.

I Inspired by Saric et al. [5], are generated using TakeLab
system

I Next 7 features measure categorial similarity and use other
report fields

N-gram Overlap

An n-gram is a set of n consecutive words

Definition
Let S1 and S2 be the sets of consecutive n-grams in the first and
the second report, respectively. The ngram overlap is defined as
follows:

ngo(S1,S2) = 2

(
|S1|

|S1 ∩ S2|
+

|S2|
|S1 ∩ S2|

)−1

(1)

The overlap is computed for unigrams, bigrams, and trigrams.

N-gram Overlap

An n-gram is a set of n consecutive words

Definition
Let S1 and S2 be the sets of consecutive n-grams in the first and
the second report, respectively. The ngram overlap is defined as
follows:

ngo(S1, S2) = 2

(
|S1|

|S1 ∩ S2|
+

|S2|
|S1 ∩ S2|

)−1

(1)

The overlap is computed for unigrams, bigrams, and trigrams.

N-gram Word Overlap After Lemmatization

I Content words are nouns, verbs, adjectives, and adverbs.

I Function words (prepositions, code, conjunctions, articles)
carry less semantic information than content words.

I Removing them may eliminate noise

I So n-grams(lemmas) are created using only content words.

I Calculated using eq. (1) for unigrams, bigrams, and trigrams.

WordNet Based Augmented Word Overlap

I High unigram overlap only if exactly the same words appears.

I WordNet is a hierarchical network of words linked by relations.

I WordNet to assign partial scores to words not in both.

Definition
We define the WordNet augmented coverage:

PWN(S1,S2) =
1

|S2|
∑
w1∈S1

sim(w1, S2)

where sim(w ,S) is minimum WordNet path length.

Definition
The WordNet-augmented word overlap feature is defined as a
harmonic mean of PWN(S1,S2) and PWN(S2, S1).

Weighted Word Overlap and Normalized Differences

I Longer reports are more likely to be similar to other reports

I Frequently used words can also cloud results
I Several features measure the normalized differences

I Weighted word overlap
I Sentence length
I Aggregate word information content

I This prevents longer reports and frequently used words from
having a advantage over shorter reports.

Shallow Named Entity

I Proper nouns convey a huge amount of information.

I SNE measure the similarity of named entities

I Overlap of capitalized words (longer than one character)

I Overlap of stock index symbols (all capital letters)
I Classified into types

I persons
I organizations
I locations
I dates
I rudimentary temporal expressions

I Binary overlap of each type are calculated for each pair

I The absence or presence of class in both is indicated

Numbers Overlap

Remove bias against reports containing different sets of numbers.

Definition
Let N1 and N2 be sets of number in two sentences: Define
numbers overlap features to be

nof 1(N1,N2) = log(1 + |N1|+ |N2|)

nof 2(N1,N2) =
2|N1 ∩ N2|
|N1|+ |N2|

and

nof 3(N1,N2) =

{
1, if N1 ⊆ N2 or N2 ⊆ N1

0, otherwise
.

Numbers differing in number of decimal places are “equal”

Categorical Features

Definition
Let b1 and b2 be bug reports. Then bi .property is the field called
property of bi . Let fn be the nth feature of the model defined by:

f19(b1, b2) =

{
1, if b1.product = b2.product

0, otherwise

f20(b1, b2) =

{
1, if b1.component = b2.component

0, otherwise

f21(b1, b2) =

{
1, if b1.bugseverity = b2.bugseverity

0, otherwise

f22(b1, b2) =
1

1− |b1.priority − b2.priority |

f23(b1, b2) =
1

1− |b1.version − b2.version|

Categorical Features

53% of all duplicates were submitted within 20 days of master.

f24(b1, b2) = |b1.creationts − b2.creationts |

0.0001 0.46 0.92 1.38 1.84 2.3 2.76 3.22 3.68 4.14 4.6

xB10
4

0

10

20

30

40

50

60

abs(bug_id1B−Bbug_id2)

P
er

ce
n

ta
g

eB
o

fB
B

u
g

s

non−duplicates
duplicates

f25(b1, b2) = |b1.bugid − b2.bugid |

Binary Classification

We ran:

I K Nearest Neighbours

I Linear Support Vector Machine

I RBF Support Vector Machine

I Decision Tree

I Random Forest

I Näıve Bayes

Binary classification models implemented in the Python package,
scikit-learn [4].

K Nearest Neighbors
I All instances in the training dataset are stored
I When a new report is tested, the closest k neighbors are

calculated using Euclidean distance.
I If the majority of those neighbors belong to one class, then

the new report is predicted to be in that class as well.

K Nearest Neighbors
I All instances in the training dataset are stored
I When a new report is tested, the closest k neighbors are

calculated using Euclidean distance.
I If the majority of those neighbors belong to one class, then

the new report is predicted to be in that class as well.

Linear Support Vector Machine

Definition
Given some training data D, a set of n points of the form

D = {(xi , yi) | xi ∈ Rm, yi ∈ {−1, 1}}ni=1

I Two hyperplanes that divide all points with yi = 1 from
yi = −1 with no points are between the two planes.

I Largest such planes are called maximum-margin hyperplanes.

I The region bounded by them is called “the margin”.

I A hyperplane then divides the the margin in half.

I Test pairs are then mapped into m-space.

I Status determined by position relative to hyperplane

Linear Support Vector Machine

Radial Basis Function Support Vector Machine
Similar to Linear SVM, except that the dot products used to define
the hyperplane are replaced by Gaussian radial basis function.

Definition
Let r = ‖x− xi‖ and ε > 0. Then, define the Gaussian radial basis
function to be:

φ(r) = e−(εr)2

I Fits maximum-margin hyperplane in a transformed feature
space.

I Though the classifier is a hyperplane in the high-dimensional
feature space, it may be nonlinear in the original input space.

I Using the Gaussian radial basis function, the corresponding
feature space is a Hilbert space of infinite dimension!

I A Hilbert space is an abstract vector space possessing the
structure of an inner product that allows length and angle to
be measured.

Decision Tree and Random Forest

Decision trees

I leaves represent class labels

I branches represent conjunctions of features

I “learned” by splitting set into subsets based on feature.

I Repeated on each derived subset in a recursive manner.

I Recursion is completed when the subset has the same value

I This top-down induction of decision trees is a greedy algorithm

Random forest

I Classifier uses a number of decision trees

I Improves the classification rate.

I Random sample selected from the training set

I Decision tree created for that set and process is repeated

I Trees are then averaged together to create a random forest.

Decision Tree and Random Forest

Decision trees

I leaves represent class labels

I branches represent conjunctions of features

I “learned” by splitting set into subsets based on feature.

I Repeated on each derived subset in a recursive manner.

I Recursion is completed when the subset has the same value

I This top-down induction of decision trees is a greedy algorithm

Random forest

I Classifier uses a number of decision trees

I Improves the classification rate.

I Random sample selected from the training set

I Decision tree created for that set and process is repeated

I Trees are then averaged together to create a random forest.

Näıve Bayes
I Takes probability of class into account
I 1:4 ratio of duplicates to non duplicates in training set.
I For test point, the proportions of neighboring duplicates and

non duplicates are calculated.
I These proportions are compared with the expected

probabilities.
I The new query is then labeled accordingly

Näıve Bayes
I Takes probability of class into account
I 1:4 ratio of duplicates to non duplicates in training set.
I For test point, the proportions of neighboring duplicates and

non duplicates are calculated.
I These proportions are compared with the expected

probabilities.
I The new query is then labeled accordingly

Measures

Definition
Let tp, tn, fp, and fn be the number of true positive, true
negatives, false positives, and false negatives, respectively. Then,

Accuracy =
tp + tn

tp + tn + fp + fn

Precision =
tp

tp + fp

Recall =
tp

tp + fn

Area Under the Curve (AUC) is created by plotting the fraction of
true positives out of the total actual positives vs. the fraction of
false positives out of the total actual negatives, at various
threshold settings.

Results

Eclipse NKN LSVM RBF SVM Tree Forest Näıve

Accuracy: 0.99992 0.99996 0.99984 0.99984 0.99996 1

Precision: 0.99960 0.99980 0.99921 0.99921 0.99980 1

Recall: 1 1 1 1 1 1

AUC: 0.99995 0.99998 0.9999 0.9999 0.99998 1

Open Office NKN LSVM RBF SVM Tree Forest Näıve

Accuracy: 0.99993 0.99993 0.99970 0.99980 0.99990 0.99993

Precision: 0.99966 0.99966 0.99847 0.99898 0.99949 0.99966

Recall: 1 1 1 1 1 1

AUC: 0.99996 0.99996 0.99981 0.99987 0.99994 0.99996

Mozilla NKN LSVM RBF SVM Tree Forest Näıve

Accuracy: 0.99995 0.99995 0.99994 0.99935 0.99994 0.99981

Precision: 0.99975 0.99975 0.99968 0.99694 0.99981 1

Recall: 1 1 1 0.99981 0.99988 0.99904

AUC: 0.99997 0.99997 0.99996 0.99952 0.99991 0.99952

Preliminary Results and Observations

I Textual features together with categorical features provide
very good classification results!

I Accuracy is over 99% for all combinations of datasets and
classification algorithms.

I A recall of 100% was obtained for all datasets (positive
instances correctly classified).

I Precision is also high, but not 100%. (A few pairs of
non-duplicate bug pairs were classified as duplicates.)

I Only two pairs of bug reports were misclassified.

I Three of the classification algorithms are common, but the
additional algorithms we used may work better for larger
datasets.

Comparison to Recent Published Works

I The new set of textual features presented in this paper
improves the accuracy between 3.25% and 6.32% over the
contextual approach proposed by Alipour et al.

New Features Alipour

Accuracy AUC Accuracy AUC

Eclipse 100.0000 1.0000 96.75 0.9900

Open Office 99.9899 0.9999 93.67 0.9660

Mozilla 99.9930 0.9999 94.78 0.9430

Table: Comparison with Alipour’s Results [1]

Sun et al. [6] proposed features 19 - 23, in addition measures
based on the BM25F. Their results are reported in terms of
top-k list. However, no more than 80% of the duplicates were
correctly identified.

Conclusions and Future Work

I Improved method based on textual similarity measures

I A total of 25 new textual features are used.

I Binary classification methods categorize bugs into two classes.

I Tested on bug reports from Eclipse, Open Office, and Mozilla.

I Improves duplicate bug report detection by 6.32% .

I These preliminary results are very promising.

I In future work, we plan on using much larger datasets.

Bibliography

A. Alipour, A. Hindle, and E. Stroulia.

A contextual approach towards more accurate duplicate bug report detection.
Proceedings of the Tenth International Workshop on Mining Software Repositories, pages 183–192, 2013.

C.-C. Chang and C.-J. Lin.

LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

A. Lazar, S. Ritchey, and B. Sharif.

Improving the accuracy of duplicate bug report detection using textual similarity measures.
Proceedings of the Eleventh International Workshop on Mining Software Repositories, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Saric, G. Glavas, M. Karan, J. Snajder, and B. Basic.

Takelab: Systems for measuring semantic text similarity.
In Proceedings of the First Joint Conference on Lexical and Computational Semantics, pages 441–448,
Montreal, Canada, June 2012.

C. Sun, D. Lo, S. Khoo, and J. Jiang.

Towards more accurate retrieval of duplicate bug reports.
Proceedings of the 26th IEEE/ACM Automated Software Engineering, pages 253–262, 2011.

Thanks Dr. Lazar and Dr. Sharif for awesome advising!

[3]

