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Problem Statement

Let ABC be an equilateral triangle with edge length c inscribed in

a circle. Let N be a point on minor arc
_
AB. Let NB = a and

NA = b. Is it possible for a, b, and c to all be distinct positive
integers? Proposed by Stanley Rabinowitz [1].
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Short Answer

Yes!
For example, when c = 7, it can be shown that a solution occurs
when a = 3 and b = 5.

• Are there more solutions?

• Can we find all solutions?

• Does this geometric problem connect to other areas of
mathematics?

YES, again!
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Algebraic Representation of a, b, and c

Solution. We want to find distinct integers a, b, and c .

• It follows that m∠ANB = 120◦.

• By the Law of Cosines,

c2 = a2 + b2 − 2ab cos(120◦).

• Since cos(120◦) = −1
2 ,

c2 = a2 + b2 + ab.
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Distinct Integers

• We can show that positive integers a, b, and c are distinct
using c2 = a2 + b2 + ab.

• It is trivial that c > a and c > b.

• Suppose a = b. Then

c2 = a2 + b2 + ab

c2 = 3a2
c

a
=
√

3

Because
√

3 is not rational today, we have a contradiction and
a 6= b!

• Thus our a, b, and c are always distinct!
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A Little Algebra

• We can manipulate our equation, such that,

4c2 = 4a2 + 4b2 + 4ab

4c2 = 4a2 + 4ab + b2 + 3b2

(2c)2 = (2a + b)2 + 3b2.

• Next, we let z = 2c , x = 2a + b, and y = b.

• This substitution yields

z2 = x2 + 3y2.

• Note since z = 2c, z will always be even.
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Number Theory

• This is a very common equation that Euler studied intensely.

• It is classified as a homogeneous Diophantine Equation.

• This implies that for any positive integer s, sx , sy , and sz will
also be a solution.

• Thus, since we gave one solution already, we can construct an
infinite number of solutions.

• This problem has an infinite number of solutions!
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Characterizing Solutions

Lemma
If z2 = x2 + 3y2, then all solutions can be characterized by only
considering integers x, y , and z that are relatively prime.

Proof.
Suppose that x , y , and z ∈ Z+ and satisfy z2 = x2 + 3y2. Let d
be a common divisor of x and y . This directly implies that d2|x2
and d2|3y2 and d2|x2 + 3y2. Therefore,

d2|z2.

By unique factorization
d |z .

By further argument, we discover that if d divides any of the two,
x , y , or z , then it divides the third.
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Characterizing Solutions Continued

• Assume that g is a common divisor of the x , y , and z .

• Set x1 =
x

g
, y1 =

y

g
, and z1 =

z

g
.

• We conclude that x1, y1, and z1 will satisfy x2 + 3y2 = z2,
with pairwise gcd(x1, y1, z1) = 1.

• We can then call x1, y1, and z1 primitive since these values
are not multiples of a smaller triple.

• Since z is even and pairwise gcd(x , y , z) = 1, we also know
that x and y must be odd.
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Finding All Solutions

z2 = x2 + 3y2

z2 − x2 = 3y2

Factoring, we have

(z − x)(z + x) = 3y2.

• Because the gcd(x , z) = 1, we can show that
gcd(z − x , z + x) = 1 when z is even and x is odd.

• From Niven[2], if u and v are relatively prime positive integers
whose product uv is a perfect square, then u and v are both
perfect squares.

• This implies that either z − x = 3k2 and z + x = t2 or
z + x = 3k2 and z − x = t2.
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All Solutions Presented

Case 1 z − x = 3k2 and z + x = t2

Adding these two equations together yields

2z = 3k2 + t2 or z =
3k2 + t2

2

From this we find that

x =
3k2 − t2

2
and y = kt.

Note that we must choose k and t so that gcd(k, t) = 1, both are
odd, and 3 6 |t.

Case 2 z + x = 3k2 and z − x = t2

We find that z =
3k2 + t2

2
, x =

t2 − 3k2

2
and y = kt.
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All Solutions

This means that all primitive solutions are categorized by

x =

∣∣∣∣3k2 − t2

2

∣∣∣∣ ,
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and

z =
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2
,

where k and t are positive integers chosen so that gcd(k, t) = 1,
both are odd, and 3 6 |t.
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Applying a, b, and c

Observe that a is not always positive. This will add a few extra
conditions. Since, a > 0 is equivalent to(

3k2 − t2

4

)2

>
k2t2

4

or

9k4 − 16k2t2 + t4 > 0

(k2 − t2)(9k2 − t2) > 0

(k − t)(k + t)(3k − t)(3k + t) > 0

(k − t)(3k − t) > 0

Thus, either k > t or 3k < t must hold.
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Summary

To summarize, we have proven the following theorem.

Theorem
For every odd positive integers k and t where 3 6 |t, such that
either k > t or 3k < t, all solutions to our triangle are of the form

a = s

(∣∣∣∣3k2 − t2

4

∣∣∣∣− kt

2

)
b = s(kt)

and

c = s

(
3k2 + t2

4

)
,

where s is any positive integer.
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Conclusions

• Simple solution to the proposed question was found.

• There exists infinitely many solutions.

• We have fully characterized all of the solutions.

• We found an application for integer solutions of the equation
x2 + 3y2 = z2.
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Future Research

• Do further studies on equations of the form x2 + ny2 = z2.

• For example, if our triangle is not equilateral, it can be shown:

• n > 0
• n 6= d2

• n ≡ 0( mod 4)
• n ≡ 3( mod 4)

• Learn more number theory!
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